
14th Annual AAEE Conference 239
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

On the teaching of computer programming to adults

John Lenarcic
RMIT University, Melbourne, Australia

John.Lenarcic@rmit.edu.au

Abstract: Reflections on the problems faced in teaching novice computer
programmers are presented in an informal, stream-of-consciousness manner,
based on field experience and folk wisdom acquired with RMIT Technical and
Further Education (TAFE) students. Questions of a diverse nature are raised on
research strategies to pursue for pedagogic innovations in this area.

Keywords: teaching innovations, novice computer programmers

An IT academic once remarked to me, in jest, that computer programming is as boring as “bat
shit”. Programming may appear to be a tedious activity to the spectator, but why is this so?
The very act of writing a computer program (or program code) is a task that involves
reframing an often ill-defined problem as a system of interlocking text-based components
consisting entirely of sequence, selection and repetition statements. (Sequence statements are
command-like sentences that initiate one action after another in order. Selection statements
are also command-like sentences that are used for making a choice between alternative
actions. Finally, repetition statements are - you guessed it - command-like sentences that are
used for performing some set of actions over and over, usually until some condition is
encountered that forces a stop to it.) Repetition is an essential part of any piece of software in
the making. Needless to say that “repetitive” is a synonym for “monotonous” which in turn
also means “boring”! Facetious logic aside, perhaps the reason for the dreary reputation of
programming as a “nerdy” pastime is due to how it is currently taught to adult students at
universities and colleges.

Soloway (1986) states that textbooks used in software development courses for novices focus
on the syntax and semantics of constructs in a programming language. After 17 years nothing
has really changed, with the syntax and semantics approach still being the way programming
is taught at most institutions today. The syntax of a computer language is the set of structural
patterns that individual tokens of the language must adopt to form valid statements in a
program. Semantics deals with the meaning of these component statements and the program
as a whole. (I usually describe the distinction between syntax and semantics to my students
by first writing Noam Chomsky’s famous sentence “Colourless green ideas sleep furiously”
on the whiteboard (Chomsky, 1957). This sentence appears to sound right in that we can tell
that it’s a properly formed sentence. Adjectives are used OK. Nouns and verbs are placed in
the right order. This is syntax at play. But the whole sentence makes no logical sense and has
no meaning. That’s semantics or a lack of it!)

To attain computer literacy, students of programming are shown the meaning of the syntactic
components of a computer language and how they are individually used in very simple
examples (in a manner similar to that of a phrase book for travellers.) They are then given

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

relatively straightforward practical exercises to undertake so that their newly acquired
knowledge of syntax can be put into practice. The very first program that students are taught
to write is one that simply displays the sentence “Hello World.” on screen. By convention,
this is generally the first program that most novice programmers write, regardless of what the
computer language may be. Guzdial and Soloway (2002) maintain that this opening approach
is symptomatic of the outdated view of computing and students that many IT educators have.
In an age of affordable multimedia computing for the masses, it is no wonder that students
find it difficult to be inspired by merely displaying a line of text. Many students today are
part of the “Nintendo” and “MTV” generation of audiovisual aficionados and this is a
possible contributing factor to IT education being dubbed by some to be “tedious and dull”
(AAUW, 2001).

Guzdial and Soloway (2002) advocate a “multimedia-first” approach to the teaching of
computer programming. In other words, inspire the students by getting them to play with
sounds and simple animations. This of course assumes that students are of sufficient technical
sophistication in the first place. Novices may be able to grasp writing a “Hello World”
program because of its sheer simplicity but going beyond this level is another story. It is here
that most students fall over because they can’t put the previously learned pieces of syntactic
theory together into one program whole. Learning to program is like learning to ride a
bicycle, I often tell my students. I can show them the mechanics of the theory in class but
only the students, on their own, can be in control of how soon they can ride and not fall over.

Lots of practical experience is involved in the path from novice to expert programmer. The
prevailing philosophy of most IT educators that I know is that the best way to learn how to
write code is to write code. As Thomas Edison said: “Genius is 1% inspiration and 99%
perspiration.” Programming students are usually required to submit several programming
assignments for assessment during the course of a semester. Once again, these are meant to
gauge a student’s ability to comprehend the theory and apply it in a practical context. This is
the way computer programming is taught at most academic institutions at post-secondary
level today and it has probably been carried out in this fashion since the dawn of IT.

The learning of software development mainly occurs in a computer laboratory environment
with PCs on benches in fixed positions facing a whiteboard and projection screen at the front
of the room. The décor is Spartan and not at all aesthetically pleasing to say the least. The
isolation enforced by the individual workstations doesn’t facilitate context-based learning.
Situated cognition encompasses the latter approach in that learning is considered to be
primarily social in nature (Hansman, 2001). Communities of shared practice facilitate both
the incubation and transfer of knowledge. Sheard and Hagan (1999) outline the design of a
new learning environment to assist weak introductory programming students at tertiary level.
The “environment” discussed is the style of delivery not the actual physical surroundings of
learning, which presumably are immutable for technical reasons. Procedures for assessment,
assignment work, tutorial classes, group exercises and lectures are summarised. In the latter,
role-playing activities are included to sustain interest in the proceedings.

To exploit the benefits of context-based learning, it would perhaps be a better idea to
experiment with “pair programming” in a lab environment (Williams and Kessler, 2000).
This is a practice in which two programmers work side-by-side at one computer, constantly
collaborating on the same piece of work. The technique is primarily aimed at professionals,
who claim significant increases in productivity and quality of software products after its
acceptance. It could be adopted in an educational context but it might also be seen to raise the

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

risk of plagiarism even more so the technique could prove to be politically unsound at many
academic institutions.

In the TAFE sector within the RMIT School of Business Information Technology, an
introductory programming course generally consists of a one hour theory lecture per week
and four hours of practical work in a computer laboratory, spanning a 15-week academic
semester. It must be said that teaching programming using a lecture format isn’t the ideal
approach. Most students are bored to tears by lectures that dwell on technical minutiae, such
as where to place a semicolon in a computer language statement. But to master programming
one must have the patience and fortitude to tame the proverbial “devil in the detail”. More
learning takes place in the labs where students engage in practical activities and the instructor
acts as a mentor, almost in a “master-apprentice” relationship. One of the problems with
computer programming is that it has almost always been in an identity crisis, much like the
discipline of computer science itself (Nwana, 1997). Is it a science or an art or a craft or a
skill?

No one has yet provided a definitive answer.

Computer programming is an adult activity, if not by definition then by practice. As Perlis
(1982) notes with tongue-in-cheek: “Perhaps if we wrote programs from childhood on, as
adults we’d be able to read them.” The uninitiated may cling to urban myths that children or
young teenagers can become adept at the skill but that is primarily due to sensationalist
reporting by the media over-inflating the prowess of fledgling hackers, who often perpetrate
their acts using a “recipe-based” approach. No, the kind of programming that I am referring is
an offshoot of general problem solving from first principles, one that requires the
representation of some limited domain of reality with meticulous precision and attention to
detail. One has to be able to closely analyse a real-world problem, understand it so as to make
explicit that which was implicit, and then translate all of this into a language that a “dumb”
computer can comprehend. The computer is merely an external cognitive tool that amplifies
the abilities of the person that programs it. So, if you put garbage in, you can only ever expect
garbage out. Perlis (1982) states: “You think you know when you learn, are more sure when
you can write, even more when you can teach, but certain when you can program.” This
feeling of certainty is a hallmark of the skilled programmer, even though it is generally
accepted that error-free software is the mythical exception rather than the norm.

Computing programming is often dubbed a very difficult activity in the literature (e.g., Pane,
et al, 2001). To quote Perlis (1982) once again: “Most people find the concept of
programming obvious, but the doing impossible.” Most consumers would appreciate the idea
of programming a VCR to tape a TV show but anecdotal evidence would suggest that
actually doing it is unachievable by the masses. Otherwise, what else would explain the near
ubiquitous “flashing display” on most VCRs in service or the invention of G-code? And the
programming of a VCR is vastly simpler than programming in the C++ computer language,
say. Some of the difficulty in learning how to program a computer is acknowledged as being
inherent to the skill itself. However, part of this complexity could be due either to the poor
design of languages or to the fact that it is not taught in the right way (Pane, et al, 2001).

Dijkstra (1989) laments at the use of comfortable metaphors and mundane analogies to teach
programming, frowning upon the continued description of the new with yesterday’s
vocabulary. As Dijkstra (1989) contends: “Coming to grips with a radical novelty amounts to
creating and learning a new foreign language that cannot be translated into one's own

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

mother tongue.” He believes that students should be taught the joy of rigorous thinking by
being shown the beauty of mathematics. Formal methods derived from mathematics could
serve as a lingua franca to facilitate the teaching of programming in an optimal manner. By
developing the intellectual stamina to face uncomfortable truths, the novice can then begin to
tame the complexity that is computer programming. It’s the “castor oil” approach to
education: This medicine is good for you; so it tastes bad but given time you might get used
to it.

Devlin (2001) is also of the opinion that mathematics is important for budding software
engineers. Abstraction is difficult for the human brain to cope with and this is what software
development is fundamentally all about. As a species we evolved primarily to interact with
the concrete structures of our physical environments not the virtual ones exemplified by
computer programs. Mathematical thinking reinforces repetitive learning of abstractions.
Many TAFE students, mature-age or otherwise, have little or no training in higher-level
mathematics. Indeed, the students with no mathematical background generally exhibit the
most difficulty with computer programming. Monroe and Orme (2002) provide some
guidance on how to expand the mathematical vocabulary of students; however their advice is
for primary school teachers. What should probably be a prerequisite for the novice
programmer is some exposure to advanced mathematics beyond basic arithmetic, such as a
palatable introduction to discrete mathematics, but this would be a syllabus policy decision
outside of the authority of teachers in the trenches.

Soloway (1986) writes that research of the time indicates that computer language constructs
do not pose major obstacles for novice programmers. The real problem is that learners don’t
know how to put the pieces of the jigsaw together in composing and coordinating
components of a program. They may understand fragments of program code on their own but
have enormous difficulty assembling these parts into a working whole. Amazingly this is the
same remark that I often get from adult students today! The focus on instruction of the syntax
and semantics of programming language constructs is wrong according to Soloway (1986), as
it promotes an undue emphasis on the finished program as the final result of the whole
process. A program is a set of instructions that transforms a computer into a mechanism that
controls how a real-world problem can be solved. But a human being – the programmer –
needs to have an explanation as to why the program solves the particular problem.

According to Soloway (1986), learning to program should be viewed as learning how to put
together mechanisms and how to compose explanations. Accentuating the theoretical content
of an introductory course and making the underlying abstractions of programming explicit, in
addition to covering the rules of programming discourse, can achieve this. In other words,
students should be shown what programming has in common with other problem solving
tasks. It should be stressed to novices that programming is a design discipline with the output
of the process being an artefact that performs some desired function (i.e. a “mechanism”).
The trail of information in creating this artefact is an “explanation”. It’s a new philosophy for
interpreting the act of programming. Of course, I can think of no contemporary introductory
course or textbook that currently adopts this pedagogic strategy. Once again, the reasons are
probably political.

Eliot Soloway is one of the pioneers of “software psychology”, a neglected field of IT that
was partially inspired by the ideas espoused in Gerald Weinberg’s landmark 1971 book “The
Psychology of Computer Programming” (Weinberg, 1971). This text was one of the first to
deal with programming as a human cognitive activity. In fact, it’s probably one of the only

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

existing books still in print that does so, as most texts tend to dwell excessively on the
technical aspects of programming. In the early 90’s, during a stint as a Lecturer in Software
Development at Monash University, I was motivated by Weinberg’s book to develop a
dedicated postgraduate course in this vein. Except it
was not called “Software Psychology” because that would have raised the ire of the
Psychology academics. Rather, it was given the more innocuous title of “Behavioural Issues
in Software Development”. Arguably the first and last course of its type in Australia, it was
too introspective in a psychological sense for the powers-that-be who championed courses
that dealt with the latest technical fads of the time, and it died an unceremonious death after
only one semester. Without postgraduate courses such as this, university IT departments
cannot hope to persuade students to do research in a similar area. And without a critical mass
of research students in software psychology one cannot hope to expect findings that could
eventually make life easier one day for the rank-and-file teacher of programming.

How can the teaching of programming be improved? I believe that one has to look at
computer languages from a fresh, new perspective before anything else can be done. In April
2002, I gave a presentation at the 6th Conference of the Australasian Cognitive Science
Society entitled “Cognitive Dynamics of Programming Languages.” Are computer languages
“tools” akin to the user interface of a machine or are they artificial dialects with all or some
of their inherent linguistic properties? My talk addressed the issue of whether the acquisition
of computer languages actually changed the way people could think.

“Programming is the new Latin” was the slogan that many an early computing teacher
espoused, according to diSessa (2001), but such a notion also lead to an “antiprogramming”
backlash (e.g., Pea and Kurland, 1984). It was still unclear as to whether learning to program
made people more logical and powerful thinkers, as it was once believed that the learning of
Latin would do. However, the many arguments that went to and fro ignored the work of
amateur linguist Benjamin Lee Whorf…

The concept of linguistic relativity (also know as the Sapir-Whorf hypothesis) suggests that
natural languages influence the way their speakers think (Whorf, 1956). It could be argued
that programming languages share more than just metaphoric links with natural languages.
For example, both are constructs dictated by the frameworks of syntax and semantics, albeit a
computer language is devoid of speech and exists only as a form of writing. Could this be a
reason for why learning to programming is so often dubbed a difficult task?

Perhaps adults find it so hard to learn their first programming language because it is more like
a natural language than most computer scientists would care to admit. It has been taught like
it was a physical tool to master when the mode of instruction should have been similar to that
required to gain fluency in a second tongue. Gaining competency in a second natural
language as an adult learner has always been deemed to be challenging. But at least the
subject matter is considered from a linguistic angle for the pedagogic approaches involved in
language learning. I propose that we should teach programming languages as if they were a
second natural language to be acquired. The first step should be to teach students to read
before they can write. Remember that computer languages have no analogue to speech so
novices can’t learn how to talk first. Their goal is to become fluent in the composition of
complex programs, something vaguely similar to writing a novel. Now, one would not aim to
write a great novel until one has at least read a few. Same idea here: read good program code
first, identify the bad stuff and then go on to do the actual creative writing.

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

Zeller (2000) advocates the adoption of an automated system to allow students to read,
review and assess each other’s programs in order to improve quality and style. Of course, this
presupposes that students have learned to write code first. To encourage the reading of code, I
would like to see the development of computer program “literature”, a library-based resource
of good and bad examples that exists solely for critical analysis by novice and expert alike.
Knuth (1992) outlines the technical details of what the paradigm of “literate programming”
would entail. Basically, it would involve the development of a technological infrastructure
that would allow one to curl up in a chair by an open fireplace while reading a good computer
program. This has yet to be convincingly realised in the practical sense.

In what other way can software be treated as literature? Book groups are a relatively recent
phenomenon. In these gatherings interested parties discuss the merits or otherwise of a
particular novel. Hagan and Sheard (1998) discuss the value of discussion classes for
teaching introductory programming. Preliminary findings indicate that such classes, which
are held in rooms without computers, lead to an improvement in student results. The tutor’s
responsibility in such a class is to incite debate about programming concepts rather than
simply spoon-feeding answers. Once again, the clientele in the situation described are tertiary
students.

Postgraduate courses in education are far too generic in their subject matter for specialist
practitioners such as IT academics. Teachers in different disciplines face different, unique
problems. One standard set of pedagogic theories can’t possibly fit all situations.
Programming teachers would benefit immensely from undertaking a graduate diploma in
education that actually focused in part on strategies derived from software psychology
meshed with contemporary pedagogic theories. This could be achieved by offering an
elective via team teaching in a generic diploma: one member from an education faculty and
the other from an IT faculty. The latter individual would have to be well versed in software
psychology as well as the nuts-and-bolts of computer programming. Indeed, an
interdisciplinary research venture involving academics from IT, education and psychology
may be the best approach to demystify the art of computer programming for everyone.

References

AAUW (2001). Tech-savvy: Educating girls in the new computer age. New York: American Association of

University Women Education Foundation.
Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.
Devlin, K. (2001). The real reason why software engineers need math. Communications of the ACM, 44(10), 21-

22.
Dijkstra, E.(1989). On the cruelty of really teaching computing science. Communications of the ACM, 32(12),

1398-1414.
diSessa, A. A. (2001). Changing minds: Computers, learning and literacy, Cambridge, MA: MIT Press.
Guzdial, M. and Soloway, E. (2002). Teaching the Nintendo generation to program. Communications of the

ACM, 45(4), 17-21.
Hagan, D. & Sheard, J. (1998). The value of discussion classes for teaching introductory programming.

Proceedings of the 3rd annual conference on Integrating Technology into Computer Science Education (pp.
108-111). Dublin City University, Ireland.

Hansman, C. A. (2001). Context-based adult learning. New Directions for Adult and Continuing Education, No.
89, 43-51.

Knuth, D. E. (1992). Literate programming. CLSI Lecture Notes No. 27, California: Stanford University.
Monroe, E. E. & Orme, M. P. (2002). Developing mathematical vocabulary. Preventing School Failure, 46(3),

139-142.
Nwana, H. S. (1997). Is computer science education in crisis? ACM Computing Surveys, 29(4), 322-324.
Pane, J.F, Chotirat, A.R. & Myers, B.A. (2001). Studying the language and structure in

14th Annual AAEE Conference
Melbourne, Australia, 29 Sept – 1 Oct, 2003

© 2003 Australasian Association
 for Engineering Education

non-programmers’ solutions to programming problems. International Journal of Human-Computer Studies, 54,

237-264.
Pea, R. & Kurland, M. (1984). One the cognitive effects of learning computer programming. New Ideas in

Psychology, 2, 1137-1168.
Perlis, A. J. (1982). Epigrams on programming. ACM SIGPLAN Notices, 17(9), 7-13.
Sheard, J. & Hagan, D. (1999). A special learning environment for repeat students. Proceedings of the 4th

annual SIGCSE/SIGCUE conference on Integrating Technology into Computer Science Education (pp. 56-
59). Cracow, Poland.

Soloway, E. (1986). Learning to program = Learning to construct mechanisms and explanations.
Communications of the ACM, 29(9), 850-858.

Weinberg, G. M. (1971). The psychology of computer programming. New York: Van Nostrand Reinhold.
Williams, L. A. & Kessler, R. R. (2000). All I really need to know about pair programming I learned in

kindergarten. Communications of the ACM, 43(5), 108-114.
Whorf, B. L. (1956). Language, thought and reality. (J. B. Carroll, ed.), Cambridge, MA: MIT Press.
Zeller, A. (2000). Making students read and review code. Proceedings of the 5th annual SIGCSE/SIGCUE

conference on Innovation and Technology in Computer Science Education (pp. 89-92). Helsinki, Finland.

