Experiencing the reality of the hardware-software interface

A new approach to teaching introductory level digital electronics and computer architecture

T. Anstey

School of Information Technology, Charles Darwin University, Darwin, Australia

tery.anstey@cdu.edu.au

M. Jonkman

School of Engineering, Charles Darwin University, Darwin, Australia

mirjam.jonkman@cdu.edu.au

Abstract: A problem with many introductory digital electronics and computer architecture courses is that the digital logic view of bits and gates seems far removed from students’ day-to-day experience using computers. Students who do not have a good understanding of the underlying hardware often have considerable difficulties learning assembler language. When two previously separate subjects “Computer Organization and Architecture” of the School of Information Technology and “Digital Electronics” of the School of Engineering were merged in 2005 at Charles Darwin University, the opportunity was taken to further integrate the teaching of hardware and assembler language with the aim to strengthen the understanding of the interaction between the two areas. A project based approach was chosen, culminating in the design of a fully functional 16-bit stored program computer.
A modular design strategy was taken; the students initially constructed very simple components, which they incorporated into more complex components as their knowledge increased. This provided the students with a clear understanding of the task at hand and ensured that they did not become overwhelmed by the size of the project to be undertaken. During the design phase, the students were provided with detailed specifications for the functionality of the components. The components were then developed and tested and successively integrated into a fully functional computer.
Student design and programming ability were significantly enhanced by the integrated hardware-software approach chosen for teaching computer architecture and digital electronics, with little difference between Information Technology and Engineering students. The modular approach enabled students to troubleshoot small components by themselves, enhancing self learning. In conclusion, the direction followed ensured that Information Technology students now had a much better understanding of the underlying hardware issues when programming in assembler while the Electrical Engineering students appreciated the nature of assembler programming as related to the hardware structure.

Key words: Computer architecture, hardware, digital electronics, modular, assembler
Introduction

A problem with many introductory digital electronics and computer architecture courses is that the digital logic view of bits and gates seems far removed from students’ day to day experience using computers. Some authors solve this problem by using a top down approach, starting from higher level programming languages, followed by assembler language programming and finally the computer hardware (Scragg, 1991). Students who do not have a good understanding of the underlying hardware, however, often have considerable difficulties learning assembler language (Hoffman, 2004, Hunter, 2005).

In 2005, two subjects at Charles Darwin University were merged as a consequence of a unit rationalisation. Previously, Computer Science students were introduced to the design of a stored program computer in HIT261- Computer Organization and Architecture. Implementation, however, stopped at the design of the datapath and Assembler Language was taught using the IBM PC and the A86 Assembler. Engineering students were taught the underlying principles of digital logic design in ENG222 – Digital Electronics and used DigitalWorks’ software to gain experience with digital logic. Assembler language was not taught in this subject. After merging, it was decided that the best part of the two previous units would be combined, culminating in the practical design and construction of a fully functional 16-bit stored program computer.

In the new subject, students designed and implemented a stored program computer that had a capacity of 2K 48-bit stored instructions and was capable of supporting the normal range of data manipulation instructions via an eleven register 16-bit datapath (Tanenbaum 1990). The project would require a full semester to complete and would be progressed by the students in harmony with the various topics presented in lectures and tutorials. In this way students could apply the various theoretical and practical concepts as they were presented providing them with a better insight into the practical aspects of computer organization and architecture (Calazans and Moraes 2001). It should be noted here that while a project based approach to teaching is not unusual in Engineering, it is not often applied in teaching computer architecture (Surma., 2003).
Approach

As the expense and logistical problems involved ruled out a physical implementation of the computer, it was decided to use a suitable simulation package. In order to gain some experience with the physical implementation of digital logic, however, students were required to attend practicals where they assembled, tested and operated physical logic gate circuits.

The use of simulation packages to support the teaching of Digital Electronics and Computer Architecture is commonplace (Wolffe et al. 2002, Osborne 2002). What distinguishes this particular approach is that students would use simulation software to construct a fully functional stored program computer from basic components during the course of a one semester introductory level Digital Electronics subject. This computer was to be capable of carrying out sizeable, albeit non-complex arithmetic operations and students were required to program the computer in order to prove the viability of their design.

An essential feature of this course was that the computer would be designed in a modular way. The students initially constructed very simple components, which then became sub-components for more complex components. This provided the students with a clear understanding of the task at hand and ensured that they did not become overwhelmed by the size of the project to be undertaken.

An example is the construction of 16-bit CPU registers, which were to be used in the DataPath of the computer. Students first created the ‘Gate D Latch’ from basic gates and then embedded the circuit in a suitable icon representing a ‘1-bit Memory Cell’. They then assembled 16 of these ‘1-bit memory Cells’ to create a circuit for a ’16-bit CPU Register’ which was again embedded in a suitable icon. The students were then required to create a suitable ‘Test Circuit’ for the ’16-bit Register’ and forward it to the lecturer via email for marking. It was noticed that students were not diligent in testing their components if this requirement was not enforced. They simply assumed the components worked and proceeded to employ them. Problems only emerged later when the components were embedded in more complex components. The advantage of demanding that students create a test environment and submit the various ‘modules’ to the instructor for marking was that students actually tested the components before submitting them. As a result faulty components were not forwarded to the instructor and not used in subsequent design. An interesting result of this approach was that students became actively involved in the quality assurance process of their design. They did not feel that the requirement to test their components resulted in an excessive number of assessment tasks. Instead they saw it as an integral part of the engineering design process.

Choice of software

The choice of software was dictated by availability and expense. The university had a site licence for ‘DigitalWorks 3.0’ and the software was installed in all computer laboratories at the university. An additional advantage of the DigitalWorks 3.0 software is the availability of the precursor product DigitalWorks 2.0 in the public domain. This meant the precursor software could be distributed to the students, free-of-charge for use at home. The majority of the modules that students had to construct could be created under DigitalWorks 2.0 and Digital Logic circuit simulations created using DigitalWorks 2.0 can be loaded into DigitalWorks 3.0. This allowed students to progress their project off-campus, which proved to be very popular. Only the final assembly required the more capable DigitalWorks 3.0. A further advantage was that both DigitalWorks 3.0 and DigitalWorks 2.0 operate under all versions of the Windows Operating Systems, from Windows 95 to Windows XP.

Computer construction

In order for the project to be viable, students had to be able to construct and test the simulated computer during the course of one semester. This meant that students would need considerable assistance and direction. Experience in the development of the prototype system revealed that one of the most difficult tasks was designing the ‘icons’ used to represent the components and into which the actual digital circuits were embedded. This was very time consuming particularly since the ultimate design required all connecting ‘wires’ to be straight. After some consideration it was decided to provide the students with a library of such icons. The student task was then restricted to that of designing the necessary Digital Logic functionality and incorporating this into the icon to produce a suitable and functioning component. The design of the icons is important but contributes little to the understanding of the underlying principles.

To allow the students to commence they were provided with detailed specifications for the functionality of the components and an associated icon for each component. Concurrently the formal instruction on digital logic circuits began. Students were also given instruction on functioning and construction of the basic memory elements. All 1-bit memory units were based on the ‘Gated D Latch’. The issue of more complex devices was alluded to but deferred until the students had more confidence and understanding. The construction process also provided a design path for students to follow. This mapped conveniently to the way in which the formal instruction proceeded.

[image: image1.png]Address
Sequencer H

offset

Instructi

n Store.

etrueion

ALU & Memory

Display

ALUFlags.

At the highest level of abstraction the simulated computer was composed of three main parts that needed to work in concert: (1) the DataPath, (2) the Instruction Store and (3) the Sequencer Unit, see Figure 1. The students were required to construct the parts in this order and needed the formal instruction to do so.

The students were provided with a block diagram of the three major components but initially only the DataPath was specified in detail.

DataPath

The students were provided with a suitable design for a DataPath (Figure 2). This design is based in part on the DataPath provided in Tanenbaum (1990). It shows the major components and the data flow between them.

[image: image2.png]Input

cous"] Abus Bows
~[sstecor (a1 ot

=

©

w

w

Wl

e}

w

ot [Cate]

AT

Wom M —)

The DataPath at first sight appeared large and complex and was initially daunting to the students. Even so it proved the easiest part to construct. It only required knowledge of Combinatorial Logic Circuits which students grasped easily. Students had little difficulty in building the essentially static DataPath. The construction was highly modular and final assembly was little more than connecting the modules.

The most common problem for students was up-scaling a 1-bit component to a 16-bit component. They had no difficulty with the concept but often overlooked the need to observe a ‘pin-precedence’ convention. In particular the vertical pin convention, top-most being least significant and bottom-most being most-significant, proved to be troublesome. Most students were capable of creating horizontal memory units, such as ‘Latches’ in the DataPath, and vertical memory units, such as ‘Registers’ in the DataPath. The problems arose with devices that had inputs on both the top and the left and outputs on both the bottom and the right, such as the ‘Cross-Bus-Gate’.

As mentioned previously, the students had to include each component in a ‘test configuration’ and forward this by email to the instructor for marking. This ensured that students tested their components before utilizing them. The construction of the DataPath and its components gave the students confidence in the use of the software and provided them with an insight into the operation of a computer CPU.

ALU, Memory and Shifter

The most complex components in the DataPath were the 16-bit Arithmetic and Logical Unit (ALU), the Shifter and the Memory Unit. The Memory Unit and Shifter were optional and formal tuition and discussion initially concentrated on the construction of the ALU. Its features and requirements were discussed while the students were building the more basic components.

The approach to designing the ALU was again highly modular. Students were required to create four simple components: a Logic Unit providing individual AND, OR and NOT outputs, an Arithmetic Unit providing a full-adder capability, a Decoder Unit and a Selector Unit. They initially created a 2 x 1 bit ALU and then scaled this up to a 2 x 16 bit ALU.

A common student question was what to do with the 17th bit i.e. the ‘Carry’. This allowed the issue of ALU ‘Flags’ to be introduced naturally with the C-flag being the value of the ‘Carry Output’. Students were able to design the necessary combinatorial circuits to ‘set’ the flags.

Once the ALU had been completed and tested, the students could construct the basic DataPath and demonstrate that it was able to carry out simple operations. The final stage in construction of the DataPath was to incorporate the Memory and Shifter. Experience in designing the Registers served the students well during the design of the memory unit. A number of students questioned the need for a shifter, although they admitted that it was ‘fun’ to build.

Instruction store and Sequencer

Once the students had constructed a fully functioning DataPath, it quickly became clear to them that the DataPath would only work correctly if all the various control switches were set on and off in the correct order. A single deviation from the required order necessitated restarting the process. They therefore understood the need to write the correct sequence as a bit string to an Instruction Store. A 1024 x 48-bit Instruction Store was constructed using three 1024 x 16-bit RAM devices, provided in DigitalWorks. Again a suitable icon was provided by the instructor.

The discussions relating to the design of the bit-string also took account of the need to provide for both a conditional branch and unconditional branch. Students learned that this could be achieved if the DataPath could communicate to the yet to be designed sequencer that the value of a 10 bit field in the bit string should be added to the last address.

After having completed the Instruction Store, students understood that a Sequencer was required to output the ‘next’ address on a clocked basis. By the time the students were ready to construct a Sequencer, they had been taught the techniques relevant to sequential circuits including reduction by K-Maps. A four state device was required, but students were not apprised of this beforehand and a number of students attempted to control the Sequencer using a two state system i.e. the Clock pulse. This led to some very interesting but valuable group discussions. It was noteworthy that the students resolved the problem as a group without intervention by the instructor.

At this stage the student has completed the construction of the simulated computer.

Programming

Using the in-built capability of DigitalWorks 3.0 it is now possible to program the system by entering strings of 1’s and 0’s into the ROM devices. Programming the system in this way is very time consuming, however, and it was therefore realized that this was not a viable approach. In order to enable the students to program their computer, the author developed a cross-assembler using C++.

The Cross-Assembler proved a useful tool in teaching concepts of Assembly Language. In previous courses students often had difficulties learning Assembly Language. Being used to higher level languages, Assembly Language seemed difficult to them. All students in this course, however, were capable of writing Assembly Language programs to evaluate simple arithmetic expressions. As the assembler related directly to the simulated computer, the students had very few problems in employing it.

Students were then challenged to modify their design by incorporating a counter to count all instructions and evaluate the advantage of incorporating a shifter to improve calculation speed. They were asked to write a program to evaluate 250*250 by re-iterative addition and another program to evaluate 250*250 employing the shifter. It was explained to them that multiplication can be simulated by successive doubling and halving two numbers and then summing the results, also called the method of ‘Russian Peasant Arithmetic’. The shifter is very effective at doubling and halving numbers. They had to modify the sequencer to count the number of DataPath cycles used by a program before it executed a STOP command and compare the relative efficiency of the two methods.

Two students completed the challenge assignment and showed that the successive addition method required about 450 DataPath cycles whilst the Shifter based method took only 73 DataPath cycles.

Conclusion

A key to the success of this subject are the shell structures, developed by the instructor that guide the students. Students develop simple components which perform basic operations. These are then applied according to schematics, provided by the instructor. This enables them to move from low-level circuits to a fully functioning 16-bit computer within a 13-week introductory level course. The fact that students are provided with a working assembler enables them to test and apply their computer.

Student design and programming ability were significantly enhanced by the integrated hardware-software approach chosen for teaching computer architecture and digital electronics, with little difference between Information Technology and Engineering students. The modular approach enabled students to troubleshoot small components by themselves, enhancing self learning. In conclusion, the direction followed ensured that Information Technology students now had a much better understanding of the underlying hardware issues when programming in assembler while the Electrical Engineering students appreciated the nature of assembler programming as related to the hardware structure.

The subject was evaluated according to the standard evaluation method at CDU. In addition some individual interviews were held. Student feedback as to the method of instruction was positive. The design of the sequencer proved a good exercise for students to exercise ‘sequential circuits’ design skills. A very positive outcome occurred when students realised that suitably written programs could be used to detect hardware errors such as missing connections with components. Students mentioned that they found the subject enjoyable, useful and informative.
References

Calazans, N.L.V., Moraes, F.G.(2001), Integrating the teaching of computer organization and architecture with digital hardware design early in undergraduate courses, IEEE Transactions on Education, 44(2)2, 109-119
Hoffman, M.E., The case for more digital logic in Computer Architecture (2004), ACM International Conference Proceeding Series; 57, 137 - 143
 Hunter, S.B., (2005) Teaching assembly language without using (as much) assembly language, Journal of Computing Sciences in Colleges, 20(5), 68 - 78

Scragg, G.W. (1991), Most computer organization courses are built upside down, Proceedings of the 33rd SIGCSE technical symposium on Computer science education , 341-346

Surma, D.R. (2003), Teaching microprocessors utilizing a project-based approach, Journal of Computing Sciences in Colleges, 19(1) , 104 - 112

Scragg, G.W., Baldwin, D., Koomen, H. (1994), Computer science needs an insight-based curriculum, Proceedings of the 33rd SIGCSE technical symposium on Computer science education 150-154

Tanenbaum, A. (1990) Structured computer organization, Englewood Cliffs Prentice-Hall

Osborne, H (2002)., The postroom computer: teaching introductory undergraduate computer architecture, Proceedings of the 33rd SIGCSE technical symposium on Computer science education, 2002, 157 – 161

Wolffe, G.S., Yurcik, W., Osborne, H., Holliday, M.A. (2002) Teaching computer organization/architecture with limited resources using computers, ACM SIGCSE Bulletin, Volume 34, Issue 1, March 2002, 176 - 180

Figure 2

Figure 1, Simulated Computer

Figure 2, DataPath

_1221036597

