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Abstract: This paper outlines experiences in first and second year Engineering 
Computing at RMIT.  It shows how an excellent subject design can have its education 
outcomes ruined if the scope for plagiarism is not severely limited.  The reasons for the 
plagiarism are examined using surveys and focus groups and it is concluded that the 
traditional long term goals of university students are being increasingly replaced by short 
term goals which mitigate for plagiarism and against skills and knowledge acquisition.  
The proposed solution is to meet that pressure for short term goals with appropriate short 
term assessment strategies. The result is a “managed learning environment” where 
students are given clear reasons for a subject design and its purpose and then face short 
term regular hurdles throughout the course. A key requirement of this path is unbiased 
assessment along clearly defined boundaries. To this end we have developed an 
automatic marking tool that applies the same standard to all students in a course. The 
tool gives students comprehensive feedback and frees tutors and lecturers from the 
considerable burden of marking.  The managed learning approach appears to be working 
well and ensures the majority of students do adequately master the skills and knowledge 
of Engineering Computing. 

 

Introduction  

 

The Changing Face of Student Motivation 

 The traditional view has been that the majority of university students are at university in order 
to acquire skills and knowledge simply for the pursuit of knowledge in its own right,  to attain a 
career,  or at the very minimum to pass the degree title with high enough marks to be attractive to an 
employer.  It is assumed that students must be motivated by such long term goals otherwise they 
would not be at university in the first place.  In the full fee environment of the pre-Whitlam era that 
was probably a valid assumption because the norm for high school graduates was not to go to 
university but rather to enter the work force, often leaving school before year 12.  The decision to go 
to university was often difficult, largely restricted to the professional and moneyed classes and beyond 
the financial reach of the majority.   

Even before the later Dawkins “reforms” of the school system many students went to “Tech Schools” 
who’s main aim was that of placing students in trade apprenticeships.  As in the pre-Whitlam period 
many students chose a non-university pathway.  Under Dawkins, High Schools and Tech Schools were 
amalgamated and in the majority of cases became simply High Schools.  There are good arguments 
that this caused the trade skills shortages we see now in Australia. 

The situation we face today is that the majority of students are funnelled into university ABS (2005),  
in fact university had become the default path for students with any academic potential.  The path to 
University is no longer just the result of active and difficult choices that are usually related to a long 
term goals and motivation.  The authors have had extensive discussions with large numbers of first 
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and second year students in the School of Electrical & Computer Engineering at RMIT  including 
focus groups,  “student at risk” interviews, and a survey of the entire second year cohort.  Like 
Ashworth (1997) we found the value of written surveys a little suspect and better value in the focus 
groups and interviews.  It is clear that many students come to university for other reasons such as- 

• “It’s expected of me by parents, teachers, and peers.” 

• “It was the default destination after High School.” 

• “It was better than being unemployed.” 

• “Full time menial work is boring/degrading/hard.” 

Focus group discussion would seem to indicate around 60% of first and second year students fall 
within this category.  It would be interesting to test this observation with a more rigorous study. 

Such reasons do not translate into an internalised, meaningful, long term motivation for going to 
university and so we contend that such students become motivated by short term goals.  From focus 
groups, student at risk interviews, and surveys the common short terms goals observed in the student 
body include- 

• University is only one (often a small) part of life. 

• Make more time available for paid employment. 

• ‘Get a good mark’ (which is not the same as skills development and knowledge acquisition). 

• Minimize work, maximize leisure. 

The lack of long term goals could be expected to change the way students behave and consequently 
the education pedagogy that is behind the design of university subjects and degree programs.  Failure 
to alter pedagogy in the face of changing student attitudes and behaviour can be expected to result in a 
variety of problems in the education process and the ideal education output – a professional and highly 
skilled graduate.  

 

 

Case Study : Engineering Computing 

The consequences of short term goals can be seen in a recent restructure of first and second year 
Engineering Computing at the School of Electrical & Computer Engineering (SECE) at RMIT.   The 
first two years of the 4 year degree program are common between Electrical Engineering, Electronic 
Engineering,  Computer Systems Engineering,  Network Engineering,  Biomedical Engineering,  and 
Communication Engineering.  Engineering Computing together with Embedded Systems compromise 
one subject per semester in the first and second year.  Students are first taught to problem solve with 
Matlab,  then to program in C and C++ with an orientation toward embedded systems. The first year 
and second year subjects in Engineering Computing are where students get their main C and C++ 
experience.  

First year Engineering Computing in 2006 had an excellent set of project and lab activities including a 
report on current computing,  and several assignments that culminated in a GUI based calculator.  
These looked interesting,  exercised problem solving skills, and developed programming skills. 

Second year engineering computing was revamped in 2007 and the laboratory program used an auto-
tester (Radcliffe 2004) that eliminated the labour of testing and reporting on student’s programs.  This 
meant it was economically feasible to run lab tests every 2 weeks for all 160 students under proper test 
conditions.  The results stunned staff and students,  a relatively simple program had a pass rate of only 
30%, 70% failed!  What was wrong?  Initially tutors blamed the auto-testing tool,  but it proved to 
work correctly.  Next to blame were the students, but with so many students failing that was not 
tenable. Proper focus groups were then held with the usual provisos- 

• All participants will tell the truth. 

• Blaming and flaming is banned,  stick to the facts and find polite ways to state opinions. 

• What is said will not effect any individual after the event ( for example admissions of 
cheating). 

• Any notes taken must not be able to identify any individual. 
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The twenty five involved students responded very well to this process and there was good agreement 
between the several focus groups held- 

• In first year it was possible to plagiarise with little fear of detection. 

• Short term goals such as those discussed previously caused many students to fall into the trap 
of plagiarism in first year and so they had not developed essential programming skills despite 
being warned they needed these skills for 2nd year and latest years.   

• The new auto-test laboratory testing regime used the following year, left no way to hide the 
lack of skills for those who had not mastered the basics of programming. 

• The motivation to become good at engineering programming was weak in a large proportion 
of the class because many intended to select degree programs with little or no programming in 
the following year.  (This in fact was an interesting misperception as most degree programs 
require considerable programming in project work.)    

 The net result of the discovery and consultation process was an immediate overhaul of the teaching 
program,  and considerable work for lecturers and students alike in order to ensure that by the end of 
semester the learning deficit was overcome. 

 

 

Reflection 

The root cause of the problems just outlined was the mismatch between the nature of student 
motivation assumed by academics and that which existed in reality.  This mismatch resulted in 
significant plagiarism to the level where basic skills and knowledge were seriously compromised.  
Given that the aim of a university program is to ensure a good level of skills and knowledge what can 
be done? 

 

Managed learning:  working with students of less motivation is not new in teaching.  There are many 
lessons to be learnt from standard theory and practice (Pintrich & De Groot 1990) such as - 

• Provide clear reasons and motivation to master the knowledge or acquiring skills. 

• Provide clear, short term goals (meet students’ short term horizons with the appropriate 
teaching strategy).  

• Revisit and remind students of key reasons to acquire skills and knowledge. 

• Ensure uniform consequences for failure to perform. 

How appropriate is this for a university environment?  There are good arguments for saying that if 
students are not motivated then they should not be at university and should simply be failed from the 
course.  It can be argued that degree program graduates must have self motivation and long term goals 
otherwise they are not worthy of the degree title.  A counter argument is that we academics are placing 
unrealistic expectations on young people trying to start their adult life and earn money to pay 
education fees or live life as community expectations suggest.  A more pragmatic answer is that all 
universities enrol such students and as educators we are required to do the best we can with the 
students we have.   

In addition, societal expectations of University education have increased and the degree to which 
Universities rely financially on student fees may motivate some to lower their intake standards.  

Accepting the pragmatic point of view requires that academics take a closer look at student 
motivations and redesign their subjects, effectively providing managed learning in a way not familiar 
to many universities.  

 

Career focus:  it was commented in the focus groups that getting a job seemed a long way away for 
many first and second year students and this distance negatively effected their motivation.  This is an 
issue which can be directly addressed by academics,  for example- 
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• Typical jobs, salaries and entry requirements can be discussed with the class. 

• Job depth on popular job search websites such as:  www.seek.com or www.mycareer.com can 
be displayed on screen. 

• Examples of real world projects could be discussed if staff have such experience. 

This can be done in a 2-5 minute introduction to a lecture or at any time. 

Hopefully students will see that it is in their own self interest to take a longer term view and actively 
acquire skills and knowledge.  From the authors’ perspective it was noted that many students were 
surprised by the range of salaries available to graduates and that technical, professional and leadership 
skills were key in determining who obtained the better paying jobs. 

 

 

The New Laboratory Structure 

Both first and second year Engineering Computing courses have been reworked with a common 
structure in the laboratory program- 

• Weekly two hour laboratory sessions. 

• Odd weeks are help sessions dedicated to getting students ready for the coming tests in the 
even weeks. 

• On even weeks the first hour is a help session and the last hour is a test under exam 
conditions. 

 

An individual test is administered as follows- 

• Well in advance the template of specifications to be met in the test is published and examples 
practiced in laboratories. Students are encouraged to practice at home.  

• Teamwork and peer support is assumed and not discouraged.  

• In the actual test session students are issued with the same specifications template to which 
they must add code using a re-imaged computer with no access to the network, other 
computers, or other students.  At the end of the test the student code is collected and sent to 
the lecturer. 

• The lecturer runs the auto-test program that automatically and thoroughly tests the code with a 
large variety of test vectors and creates a detailed email response for each individual student 
listing which specifications passed and which failed. This is sent to each student 
automatically. 
The testing process also creates a marks file, statistical summary and administration reports. 

• Early in the semester students may get a second chance to try the test but with a marks 
multiplier of 0.7 .  

Unlike Wiedemeier (2002) we did not find it necessary to have an individualized tasks,  merely a non-
trivial task where students were tested in isolation. 

This system has a number of practical advantages:  

1. Marking is according to an unbiased standard, independent-of-tutor interpretation. Different 
marking standards are an important concern for many students which causes laboratory classes 
by tutors who are perceived as lenient to be swamped with students while others are 
comparatively deserted.   

2. The marking load on the tutors and lecturer is vastly reduced leaving much more time for help 
and tutoring.  Previously,  without the auto-tester program,  tutors spent most of their time 
marking students with little time left for actually helping students. Tutors were required to 
straddle two vastly different roles, that of assessor/executioner and that of helper, something  
which is innately difficult and especially so for beginning tutors.  
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The Auto Test Tool 

The Auto Test tool can be used exclusively by the lecturer or be delegated to the tutors.  Before the 
tool can be used student code must been loaded into a single directory.  Next the user must choose a 
test vector file and hit the “run” button.  The image that follows shows an auto-test session which has 
just completed testing student code and shows summary statistics on the class.  The testing is 
relatively fast,  for example applying 40 test vectors to 150 student programs took some 7 minutes on 
a Pentium 3 class machine  Other features of the auto-tester include- 

• A simple yet powerful test language for defining test vectors (an expected input plus the 
expected output).   
A  “check vectors” function allows the lecturer to check that the test vector file is correct. 

• The ability to quarantine student code so it cannot behave maliciously to the system. 

• The ability to timeout and progressively reduce timeout periods for student programs that 
consistently hang up for successive tests. 

• A report file that details all students and the mark they achieved. 

• A report file that describes the average class mark by individual test and category of test. 

• A detailed email to each student outlining tests that were passed and not passed and how the 
final mark was arrived at.  Such individually tailored feedback would not be possible using 
purely human means.  

• Adjustable marking for each test with may include a negative mark for a failed test. 

 

 

Figure 1: Auto-Tester Report on a Class Test 

In Figure 1 the left hand window displays and allows editing of the test vectors.  Each line starting 
with an “@” symbol invokes a command related to the testing.  The “@v” command applies a test to 
the student’s program and the next line holds the expected response.  The large window on the right 
shows the results from testing a small tutorial group of 11 students.  It firsts states where the individual 
report files are held and next gives the class statistics for each test vector. 
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Figure 2: Histogram of First Project 

 

Figure 2 shows the raw marking histogram from the first assignment.  Most tests had a mark of +4 for 
a correct answer and –1 for a wrong answer.  The results show the classic 3 hump outcomes – those 
students who really tried (80%-100%),  those who tried a bit (50-70%), and those who have no idea 
(under 10%).  This graph was extremely useful in splitting the class early in the semester to give 
students the help they needed. In general those with 80% and above did not want or need help.  Those 
on 50%-70% need help in reading the specification and translating that to tests,  and some help on 
programming.  Those in the bottom group needed intensive help coming to grips with C++ and just 
getting a program to compile.   

At heart the QtAutoTest tool requires that the student generate a text string that can be compared to an 
ideal text string.  This immediately raises the possibility of use in subjects such as mathematics where 
a numerical answer is required,  or chemistry where a text string such as H2SO4 may be the answer.  It 
would be interesting to pursue these possibilities. 

 

Operation & Student Acceptance 

Experience in first and second year has shown problems with student acceptance and general operation 
that can be easily overcome.  Common student complaints have included- 

• If I make “small” mistakes then I get a low mark. 

• While the program didn’t work at all a lot of the code was right so I should not get a poor 
mark. 

• I can’t remember the syntax and so can’t get anything right. 

• It’s not fair to have so many test conditions and make us think of them.  

• I memorized the solution and didn’t have to know anything. 

• The guide did not give any hint you required this test. 

• There is no human to check up on me or ask questions so I can cheat easily. 

Overcoming these problems requires careful design of the whole process before the activity and 
attention to student motivation and expectations. 
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The following process design issues were found to be important- 

• Students may try to hide solutions on the test machines so consider limiting machine access,  
randomising which machine students use,  and re-imaging machines. 

• Students may seek help during a test and so network access must be blocked.  Standard test 
conditions such as no mobile phones and no talking must be enforced. 

• Ensure there is no mismatch between student and lecturer expectations of the solution.  At 
minimum use standard test traceability by ensuring that every test in the test vector files 
relates to a request for functionality in the problem template that the students see.  It is wise to 
get other staff or tutors to try the problem or check the test vectors and problem template. 

• Ensure the problem is within the capability of students and does not use background 
knowledge that instructors assume but students do not possess.  This is best achieved as above 
by getting tutors or staff to test the problem, check the template, and check the test vectors. 

• Ensure all language demands have been well covered in lectures and one help session. 

 

One of the most important activities is setting student expectations before any test occurs.  It was 
found important to emphasise that a significant part of the test is thinking about test conditions not just 
writing code.  To aid the students coding methodology the Extreme Programming lifecycle (Jeffries 
2007) has been introduced,  especially the ideas of deciding tests before writing code and a cycle of 
writing small amounts of code then compiling and testing.  Standard engineering programming in 
industry has been introduced as a driving force in the education process,  particularly where “little” 
problems that cause massive product recalls are not acceptable.  An excellent example of these 
problems is the recent Microsoft X-Box debacle where they have set aside US$1 billion for service in 
the last quarter of 2007, Taub (2007). 
Other matters discussed with the student body included- 

• How the auto-tester worked and what type of things would cause it to reject an answer. 

• How to move between test mode and delivery mode by using test macro statements. 

• How cheating now would lead to serious problems in later tests and the exam. 

• How programming skills would be required in courses and careers such as Electrical 
Engineering that on first glance contain no engineering computing. 

 

 

Conclusion 

Student motivation is a key factor in the acquiring of key skills and knowledge in a university 
program.  Without appropriate skills and knowledge graduates may well have trouble securing a well 
payed and interesting job in their chosen field,  or may be incompetent if they do secure such a 
position.  Both reasoning and experience in the School of Electrical and Computer Engineering 
(SECE) at RMIT suggest that we cannot rely on student’s long term vision and motivation to acquire 
skills and knowledge and so the education program must be redesigned more along the lines of 
managed learning.  In such an environment the student has little choice but to acquire skills and 
knowledge as there are solid reasons clearly stated to students, and immediate consequences for 
students in the short term if they do not participate. 

The consequences of a failure to create a managed learning environment can be seen in the experience 
at SECE, where some 70% of 2nd year students were not able to solve a simple introductory problem 
under test conditions because in the previous year, and in an otherwise excellent first year course it 
was possible to plagiarise.   In first year,  short term motivations had over powered long term goals 
and pushed students into plagiarism. 

Managed learning requires a significant amount of clear and unbiased testing. In the funding starved 
environment of Australian universities this is a real problem.  In many areas of engineering and 
computer science it is possible to move a large part of the marking burden to automated marking 
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systems and so radically reduce costs.  Automated tools do not solve the problem in themselves.  The 
instructor must carefully plan the whole education process paying particular attention to student 
motivation and student expectations.  If the tool,  planning, and setting of student expectations are all 
successfully implemented then the outcome of a better educational outcome at a lower cost can be 
achieved. 
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