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Abstract: ‘Mathematics from Fluids’ is a work in progress which currently takes the form
of a series of posters which aim to develop an understanding of the physical implications
of the Navier-Stokes equations based on an understanding of basic Fluid Mechanics
principles. Taking the principle of Archimedes as a starting point, the mathematical
relationships which build into the N-S equations, are developed using only the laws of
Hydrostatics, Continuity and Conservation of Momentum. Thus the mathematics is
derived from the laws of fluid mechanics rather than the other way round. The primary
aim of the poster series is to help engineering students to appreciate both the concepts
embodied in the N-S equations and the symbiotic relationship which exists between the
realms of fluid mechanics and mathematics. Each poster is backed up by a short
Microsoft Power point presentation which illustrates the development of the ideas
presented.

Introduction

Deriving mathematical concepts from a consideration of fluid behaviour clearly turns the conventional
concept of derivation on its head. Thus the approach calls for some justification. It is this that provides
the basic thrust for this paper.

The conventional route involves deriving a general result in mathematics by the logical extension of
previously established mathematical constructs and techniques. In this way mathematic ideas are
extended to ever higher levels of abstraction thereby providing the very powerful tools that we apply
the many different fields of engineering. This approach has clear advantages in leveraging the skills
and knowledge base acquired as it allows the techniques, once learned, to be applied in widely
differing circumstances. The disadvantage is that, at least for the less gifted student, the details of a
particular engineering problem may appear to bear little relation to the context in which the
mathematics used to solve it was originally presented. As an example one might cite a typical course
on the calculus where great emphasis is placed on solving “tricky” problems of integration or
differentiation the reason for which becomes manifest to the student only when a particular example is
re-visited in an engineering context. Further, a relationship which might be quite apparent as it arises
in the context of a particular problem may be quite obscure to the student when presented as arising
from a series of abstract mathematical concepts. As S.S. Sazihin mentions in his paper “The analysis
of self-assment forms completed by students show that their progress in understanding physical
concepts is much more visible than than their progress in understanding mathematical
concepts”(Sazhin, 1998).

My first example of obtaining a mathematical result from a fluid mechanics principle is based on the
principle of Archimedes, chosen because it is both widely understood and generally accepted. This
principle may be stated in words as, “When a solid is immersed in a liquid it experiences an upthrust
force which is equal to the weight of the liquid displaced”.

The mathematical result obtained is the theorem of Gauss as it applies to the hydrostatic pressure in a
fluid. In this way the simple act of proving Archimedes, result is leveraged to obtain a more
fundamental mathematical result in an engineering context.
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My second example which follows from the first extends the idea to from the scalar pressure field of
hydrostatic to the vector field of flow velocity where the technique is used to apply the continuity
principle of fluid mechanics to an arbitrarily shaped control volume.

The final example in this set extends the previous result to the vector field of momentum where it is
used to apply the law of conservation of momentum to the control volume.

The material

The original aim of this work was to incorporate the use of vector notation in the teaching of basic

fluid mechanics including Archimedes’ principle, the continuity principle and the momentum

principle. The perceived benefits of this approach are:

1. To reduce the constraints which normally apply to the selection of a suitable control volume.

2. To demonstrate the power of vector analysis as a means of developing fundamental fluid
mechanics concepts.

The work is presented as a series of four posters (Swann 2008) with each section of a poster
hyperlinked to a short explanatory Microsoft Power Point presentation. An example is shown below.
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Introduction

Archimedes principle deals with the
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acts on a body immersed in a fluid.
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hydrostatic field) exists in the fluid.
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Archimedes principle states that:

This resultis at the very heart of our use of
control volumesin the study fluid dynamics of
flows. This is because it shows that, in
analysing the dynamics of a flow, we car, in
many cases, corsider only the flow conditions
that exist at the surface of the cortrol volume
and can igrore those that exist within

When a body is placed in a fluid it
experiences an upward force which
is equal the weight of the fluid
displaced
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indivisibles, ameans of determining the size of
geometric figures similarto the methods of integral
calculus

Resultant buoyancy force

This leads to the double integral expression
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Figure 1: Poster 1 - Three approaches to the proof of Archimedes’ principle

The first poster compares three approaches to the proof of Archimedes’ principle using three distinct
integration techniques. The first technique is integration over a region created by projecting the body
onto a horizontal surface. Here the body is visualised as a collection of columns with each one being
defined by an element of the region. This is the classical approach to the proof of Archimedes
principle. The second approach is integration of the pressure force over the surface of the body. This
makes use of the scalar or dot product applied to an element of the surface of the body. The third
approach is to combine the integration over the region with an integration of the pressure gradient over
the height of the column. Hence this integration is effectively carried out over the entire volume of the
body. At this point we may conclude that, since all three integrations should yield the same result they
must necessarily be equivalent to one another. Figure 1 shows the result as an equivalence triangle.
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Figure 2: Equivalence triangle for Archimedes

In the second poster and its associated Microsoft Power Point slides, the equivalence relations
established in Poster 1 are used to establish the continuity principle of fluid mechanics. For this
purpose the submerged body is replaced by a control volume also of general shape while the
hydrostatic pressure field is replaced by the general velocity vector field. However, since the
equivalence relations apply to a scalar field it is necessary to apply them separately to the components
of the velocity vector. Hence for this application the pressure scalar is replaced in turn by each
velocity component. Then multiplication of the elementary area by the velocity component
perpendicular to the elementary area gives the rate of flow crossing the element. Then integration
using either region surface or volume integration results in the net rate of flow out of the control
volume. We may note that the equivalence triangle for continuity includes Gauss’ theorem (See Figure
2).
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Figure 3: Equivalence triangle for continuity

In the third poster the momentum principle is applied to a control volume of general shape. In
considering the conservation of momentum it is necessary to consider both the change in momentum
flux and the forces responsible for the change. The former is relatively straightforward as we may
simply take the rate of flow through each element and multiply by the density of the fluid to obtain the
required momentum flux so for this part the equivalence relations are very similar to the relations used
in considering continuity. However handling the external forces acting requires other techniques. The
three external forces which are considered in a basic consideration of the subject are those due to
gravity, pressure and viscosity of the fluid. Since gravity on all of the matter within the control colume
the net gravity force can only be obtained by integrating over the volume. Pressure and viscous forces
on the other hand are considered to be acting on the surface of the control volume. The consideration
of the pressure force is identical in most respects to that used in the proof of Archimedes principle
except that pressure variations in all three coordinate directions must be considered. The consideration
of the viscous force is based on Newton’s concept which he termed “lack of slipperiness” and
described thus: “The resistance which arises from the lack of slipperiness originating in a fluid which,
other things being equal, is proportional to the velocity by which the parts of the fluid are being
separated from each other” (Dooge, 1983). In other words, viscous stress is proportional to the rate of
strain of the fluid.

If we again consider the surface to be made up of a large number of steps and risers then the rate of
separation of parts of the fluid from each other can be written in terms of the local velocity gradients.
For instance, in a direction perpendicular to a horizontal step, the rate of separation is simply dVz/dz
or in other words grad(},)ek and in the other two directions will be grad(V)ei and grad(Vy)ej. The
consequent viscous force on the step is obtained by multiplying by the tread area dar and the
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coefficient of proportionality 4. Again the total force generated can be obtained by regional, surface or
volume integration. Poster 3 shows the result obtained by applying volume integration to the
z-direction component of the total viscous force.

0 (grad (V. ))x Or using the operator del
ox
F;(Vistosity) _ a (grad(I/Z ))V
ﬂ - J-Volume + ay dv F;(Visc'osit)') = ﬂJ’Volume Vz (Vr ) dv
0 (grad (V. ))Z
¥ 0z

The conclusion to Poster 3 equates the change in momentum to the vector sum of the external forces

.[V(;lv.grad(sz)dv - J-volpZdv
+ j l—grad(P)Ode

+ ,uJ.voldiv(grad(Vz))dV

Before leaving Poster 3 it may be worth noting that whereas the poster has generally made use of
volume integration as this leads to a recognisable version of the Navier-Stokes equation there is no
particular reason why the integration types could not be mixed if this happened to be more
straightforward.

Poster 4 is in two parts. In the first part the results from Poster 3 are re-worked into the familiar form
of the Navier-Stokes equations as presented in most modern fluid mechanics textbooks (Cengel &
Cimbala, 2006). In the second part, the force relationships obtained in Poster 3 using the control
volume approach are equated to the surface forces acting on an identical fluid particle, The reason for
doing this is related to the mathematically based derivation of the Navier-Stokes equations which
makes use of the so called “Constitutive equations”. The constitutive equations relate the surface
forces acting on a fluid particle to the state of stress present in the fluid. In Poster 4 we find that by
simply equating the forces on the surfaces of the control volume with the equivalent forces acting on
the fluid particle and integrating it is a relatively straightforward matter to derive all nine constitutive

equations:
o, :(—P+ 2ﬂ88§j o, :(—P+ ZﬂaaZyJ o, :(—P+ 2ﬂaaZZ]
A (aaé ' aazzj fo 2 @Z" ' aa@ b A [aa? ' aa?J
AR A e
Conclusion

The Navier-Stokes equations are derived from the volume integral form of the momentum principle
equations applied to an elementary oblong control volume. This is in contrast with the classical
approach to the application of the momentum principle which in effect uses the surface integration
over a piecewise continuous control surface chosen to make the integration process as straightforward
as possible.

The practical difference is that the Navier-Stokes solution will give information about velocities,
pressures etc everywhere in the flow field, in other words, to “model” the flow. It is this difference
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which is exploited when using numerical integration methods such as the finite element methods.
Conventional momentum principle solutions yield only bulk results which apply to the whole control
volume.

The constitutive equations allow us to use the velocity gradient information from the Navier-Stokes
solution to find the distribution of normal and shear forces throughout the field.

Reflections

The mathematics from fluids materials has now been available for two academic years and so far has
had a somewhat mixed reception by Fluids Mechanics 1 classes. While the students are clearly
appreciative of the effort to integrate the study of mathematics and fluids mechanics they are usually
concerned that success in fluid mechanics may become too dependent on their mathematical ability.
On the plus side, familiarity with the divergence theorem at this stage is helpful for the later
introduction of stream functions. They are then able to demonstrate a grasp of the vector calculus
concepts within a fluid mechanics context. The divergence theorem in particular provides a valuable
stepping-stone to the introduction of the concept of stream functions.
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