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Structured abstract 

BACKGROUND  
Engineering statistics has been historically a challenge to teach due to a focus in engineering on 
uncertainty observation and process optimisation rather than population analysis and active 
experimentation.  This is particularly the case in chemical engineering statistics, with a strong process 
focus, continuous rather than discrete data sets, and underlying system (and model) non-linearity.  
However, to properly understand and apply advanced techniques, a basic understanding of inferential 
statistics is required.  This offers an opportunity to approach statistics from a process orientated 
approach at an early stage to allow chemical engineers to develop statistics capabilities as a core 
attribute. 

PURPOSE 
In this paper, we approach statistics from a process engineering point of view, to implement process 
experimentation and statistics at an early stage (2nd year undergraduate level). 

DESIGN/METHOD  
A course was developed linking inferential statistics to chemical engineering from the ground up, 
separating major topics into observation, estimation, and propagation of uncertainty. This was a 
mixed-mode course with lecture, practical, computing tutorial, and project management elements 
addressing all components. Due to classic inferential and engineering statistics not covering major 
elements at a basic level (e.g., non-linear regression, uncertainty propagation), a substantial amount 
of new material needed to be developed. 

RESULTS  
The course has now run consecutively for two years (126 students year 1, 145 students year 2) as 
CHEE2010 at UQ. 2013 results are not yet available, but 2012 indicated very strong student 
satisfaction with clear understanding of the links between professional attributes and the material 
being delivered.  Pass rate was high (92%), and engagement was very high. 

CONCLUSIONS  
There are strong benefits to teaching statistics in a process engineering context and this can provide 
vertical integration and ancillary skills development that provide a better subsequent programme 
experience, and substantially assist with key graduate attributes, particularly related to addressing risk 
and uncertainty. 
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Introduction 
Engineering statistics has been historically a challenge to teach due to a focus in engineering 
on uncertainty observation and process optimisation rather than population analysis and 
active experimentation.  This is particularly the case in chemical engineering statistics, with a 
strong process focus, continuous rather than discrete data sets, and underlying system (and 
model) non-linearity.  As such, there is a strong need for advanced techniques such as non-
linear parameter estimation and I/O uncertainty propagation, and a weaker need for 
elements such as binomial statistics that are commonly a core part of engineering and 
general statistics. However, to properly understand and apply advanced techniques, the 
inference framework needs to be fully developed.  As an example, the basis of uncertainty 
analysis in non-linear parameter estimation is an ANOVA (and related hypothesis test) to 
identify the limits of model validity.  Without understanding the principles of hypothesis 
testing and model fit analysis through ANOVA, it is not possible to understand how non-linear 
parameter uncertainty can be derived, without which parameter estimation in general is not 
meaningful. 

However, this also offers an opportunity, as core process engineering concepts such as I/O 
systems, non-linear models, and I/O propagation response can be developed at an early 
stage and fully integrated with an understanding of the significance of statistics to chemical 
engineering experimentation and system analysis. 

Key elements that are very important to process engineering that are not covered in more 
general and widely used engineering statistical texts (Devore & Berk, 2012; Ryan, 2007) 
are:- 

 Non-linear regression (non-linear parameter estimation) (Bevington & Robinson, 
2003) and extension of inferential statistics to estimating uncertainty in parameters 
obtained from non-linear regression (Dochain & Vanrolleghem, 2001).  The majority 
of chemical engineering problems are non-linear and particularly extension of 
inferential statistics to the non-linear problem, including estimation of model and 
parameter uncertainty is critical. 

 Propagation of uncertainty.  This assesses the impact that uncertainty in parameters 
or variability in inputs has on outputs from a process.  The basic approaches are 
analytical propagation (through either addition of variance or Taylor series 
approximations (Bevington & Robinson, 2003; Wikipedia_contributors, 2012)) , or 
numerical propagation through Monte-Carlo simulations (Fishman, 1996; Metropolis 
& Ulam, 1949). 

Both of these topics would be regarded as very advanced in inferential statistics but are a 
core requirement of process engineering, and are highly engaging as analytical problems for 
process engineering students (Crosthwaite, Cameron, Lant, & Litster, 2006).  This paper 
proposes an approach that addresses the requirements of inferential statistics education with 
process engineering statistics requirements to engage process engineering students at an 
early stage in their education. 

Methodology 
The course was approached from the point of view of uncertainty management in process 
engineering with the three core modules of:- 

(a) Uncertainty observation, covering core inferential statistics, including source and 
application of distribution, point estimation, and hypothesis testing. 

(b) Uncertainty and parameter estimation, covering ANOVA, and linear and non-linear 
regression and parameter estimation. 

(c) Uncertainty propagation, covering analytical propagation of variance in linear and 
non-linear I/O equations, as well as numerical Monte-Carlo propagation. 
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Assessment was split evenly between individual assessment and group assessment, with 
major practicals addressing each of the components above, as well as a capstone practical 
covering all components, and mid-semester (10%), computing practical (10%) and final 
(30%) examinations. 

Wastewater treatment problems were used heavily as case studies, as an example of an 
uncertainty dominated system (2010 flooding being an extreme example – Figure 1), and a 
field trip to the Oxley Creek Wastewater plant was used to provide practical relevance and 
context (Figure 1). 

 
Figure 1: Oxley WWTP used as an example of uncertainty management issues (2010 flood 

event, photo by Aleks Atrens, copyright preserved, and photo used with permission). 

The subject has now been run for two consecutive years 2012-2013 (126 and 146 students 
respectively) as the 2nd year Chemical Engineering course CHEE2010 at The University of 
Queensland. Course evaluation results are available for 2012 and will be presented for 2013 
in the presentation.  The course was previously taught in 1st semester 3rd year as 
CHEE3010, and was a more conventional engineering statistics course, but was completely 
rewritten as presented in this paper as CHEE2010. 

Uncertainty observation 
The components of uncertainty observation were broken into the following major 
components:- 

(a) Concept of inferential statistics 
(b) Data visualisation and basic analysis (scatter plots, box plots, histograms etc). 
(c) Basic parameters of location and dispersion. 
(d) Binomial theory. 
(e) Source of normal distributions and central limit theory. 
(f) Using normal distribution for probability prediction. 
(g) Point estimation and confidence in mean. 
(h) Hypothesis testing and single- and two- tailed t, Z, and F-testing. 
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These concepts are covered exhaustively in the educational literature as they form the basis 
of most engineering statistics courses, and Ryan in particular (Ryan, 2007) provides 
excellent teaching material. 

For computing, we used common tools such as Microsoft Excel and Matlab to analyse data 
rather than specialised tools such as Minitab, which was largely to provide vertical integration 
with subsequent 3rd year courses.  A number of computing tutorials were used that 
addressed the learning objectives of this module including visualisation, calculation of point 
estimators and confidence intervals, and hypothesis testing (non-parametric, one, and two-
tailed t-testing). 

The practical orientated towards uncertainty observation was a temperature measurement 
practical, where students were required to test three different resistive temperature detectors 
(RTDs) with data logged every second, and to assess the number of samples required to 
achieve a specific error (95% confidence interval) at different temperatures. 

Uncertainty estimation – ANOVA, linear and non-linear regression 
Analysis of variance (ANOVA) was used as the keystone technique for factorial analysis, 
design of experiments, and regression (linear and non-linear).  ANOVA is a topic that is 
taught superficially, but is not generally focused on in engineering statistics (Ryan, 2007; 
Walpole, Myers, & Myers, 1998).  This is an issue since ANOVA is the basis for all future 
analysis and proportioning of variance, including formal tests for model validity and model 
comparison. 

In its basic form, ANOVA allows for proportioning variance to either variance due to variation 
in factors, or due to residual variance.  If variance due to factors is large enough compared to 
residual variance (tested by comparison of F value vs the critical F value in a hypothesis 
test), one can conclude that the factor has a significant impact.  Interaction between factors 
can also be included if there are sufficient residual degrees of freedom. 

ANOVA is also very important for regression (linear and non-linear). During regression, 
ANOVA is used to proportion variance predicted by the model vs residual variance.  Model 
validity is defined by an F-test on model vs residual variance, and parameter and model 
uncertainty are defined by another F-test that identifies all models “as good as” the optimal 
model.  Non-linear regression is taught as an extension of linear regression that successively 
optimises the objective function (J=residual sum of squares).  This allows for demonstration 
of the Jacobian principle, and estimation of model and parameter uncertainty from the J-p 
Jacobian (Dochain & Vanrolleghem, 2001).  A key component running through the whole 
estimation module is that estimation of parameters is not useful without estimation of 
uncertainty in model and parameter values. 

Log-transformation for parameter estimation is discouraged on the basis that it transforms 
residuals and is only applicable to a limited range of problems (i.e., exponential decay 
systems).   

Teaching ANOVA and regression simultaneously allows for demonstration of powerful 
techniques such as mixed categorical/continuous ANOVA (ANCOVA) where categorical 
factors are analysed by proportioning variance and continuous factors are analysed by 
regressing (using only one DOF per factor). This is done effectively using the anovan 
command in Matlab.  

Tutorials were provided on linear and non-linear regression, and the practical based around 
this was measurement of oxygen concentration during batch oxygenation, as well as 
estimation of mass transfer coefficient kLa and saturation oxygen concentration C* in the 
equation:- 

)e-(1C=C a.t-k*
O

L

2
     (1) 
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where C* is the saturation concentration, kLa is the mass-transfer coefficient, and t is the 
time. 

A variety of kLa values could be obtained which need to be assessed against factors (aerator 
size, stirring speed, and air flow) through an ANOVA. 

Uncertainty propagation  
The principles of uncertainty propagation as applied in this course have been extensively 
presented in (Batstone, 2013) (email corresponding author for a copy), but as a summary, 
the uncertainty in an output from a model or process can be estimated from uncertainty in 
input in two different ways:- 
(a) Analytical propagation, in which weighted arithmetic propagation of variance is applied 

to linear combinations of variables, and Taylor series approximations to evaluate non-
linear combinations of variables. 

(b) Numerical propagation (Monte-Carlo simulations (Fishman 1996)), in which the 
mathematical formula is repeatedly evaluated a large number of times while applying 
pseudo-random values to the input to estimate output population properties. 

In both forms, correlation in inputs can be readily accounted for, by either inclusion of the 
correlation term in (a), or generating correlated input vectors in (b). 

Both methods were taught in the course, and are shown to result in the same outcomes for 
systems linear in input. 

The practical applied to propagation was blending of salty (0.1M NaCl) solution with clean 
water and measurement in a conductivity probe.  The salty solution was subject to normally 
distributed random noise. 

Results 
Technical Outcomes 
A number of major skills were demonstrated through the course, including observing and 
estimating uncertainty, estimating parameters, and estimating impact of model uncertainty in 
outputs.  Basic competency (needed to pass the exam) included determining confidence 
intervals, fitting a model (including parameter confidence), and plotting the model vs the data.  
Advanced competency included determining model confidence intervals, and propagating 
uncertainty through the model. 

Figure 2 demonstrates an example output from the practical (computing examination), which 
could be done in either Microsoft Excel (using the solver add-in for optimisation and 
parameter confidence calculation) or Matlab. It demonstrates how both model and data 
uncertainty can be presented, as well as parameter confidence (inset).  Along with these 
integrated skills, project management skills, uncertainty reporting (including to non-technical 
experts), and data processing skills were developed. 
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Figure 2: Actual (symbol) and predicted (line) phenol concentration over time during a dilution 
event (error bars indicate 95% confidence); inset graph shows 95% confidence intervals for the 

model parameters C0 and K. 

Student proficiency 
In-line with the overall high level of engagement, attained student proficiency was high, with 
a fairly top-heavy grading outcome (Figure 3).  This was across both computing and 
theoretical examination, which explains why the scoring in non-linear estimation was so high 
(it was a core skill to the practical exam). 

 
Figure 3: Performance in individual assessment (HD=high distinction, D=Distinction), including 

practical (computing) examination and end of semester exam. 

The fail rate was approximately 4%, with those individuals failing being those who 
demonstrated consistently low engagement.  The subject final grading is slightly top-heavy, 
with excessive distinctions, which can be corrected by increasing difficulty in both end of 
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semester and practical exams (probably by introducing additional challenge questions).  
Thresholding was applied in grading, with student grades being derived from the maximum of 
their work on overall assessment, or individual assessment (quiz, exam, practical exam).  
Strong individual achievement could improve poor performance on group work, but students 
needed to score highly individual to achieve a distinction or high distinction. 

Student satisfaction 
Student satisfaction outcomes were extremely good (particularly for a 2nd year subject).  A 
summary of the overall course ratings are given in Figure 4, indicating 98% found the overall 
course to be good or very good.  The course was one of the highest rated 2nd year 
engineering courses in the Faculty, with an overall course ranking of 4.4.  The previous 
equivalent course (CHEE3010) is shown for reference.  This was generally at or below 3.0, 
and had been one of the lower ranked courses in the Faculty, consistently identified as 
requiring correction.   

In individual comments relating to CHEE2010, students focused on a number of issues that 
generated high levels of satisfaction.  These include:- 

(a) Focus on ancillary skills such as computing and project management. 
(b) Constant demonstration of relevancy of statistics and uncertainty management to 

graduate attributes. 
(c) Analytical focus, particularly in application to  statistics. 
(d) Multi-mode teaching, and focus on group based project delivery. 

	
Figure 4: Student course rating through the standardised student evaluation of course 

and teacher (SECAT), with an overall rating of 4.4/5.  Previous equivalent course 
(CHEE3010) shown for reference. 

Discussion 
While references to formal surveys have not been found, based on the authors experience, 
application of statistics in process engineering practice is not widespread, or is the province 
of experts rather than integrated with general engineering practice.  This is likely related to 
the limited extent to which more general engineering statistics courses are applicable to 
process engineering statistics.  Increasing the general knowledge and capacity to apply 
contextualised statistics is becoming more important given its fundamental link to quality 
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management systems and accreditation.  Indeed, addressing these challenges for engineers 
is the basis for approaches such as Six Sigma (Dale, Wiele, & Iwaarden, 2007), but this 
focuses on general manufacturing and its link to QC rather than the basic understanding of 
theory and linking it to discipline and graduate attributes. 

There is certainly a copious amount of material at the senior undergraduate and 
postgraduate level, but this is generally focused on more advanced topics such as dynamic 
process modelling and model identifiability and uncertainty (Dochain & Vanrolleghem, 2001; 
Hangos & Cameron, 2001).  This certainly presents statistics as a contextualised issue, but 
often in a way that is inconsistent with previous early stage courses (i.e., process rather than 
observation focused).  Based on this course, we propose a bottom up approach.  That is, at 
an early stage, focusing on analytical statistics, and presenting simplified chemical 
engineering problems (including dynamic non-linear problems) that demonstrate applicability 
of inferential statistics. This also offers the opportunity to show how different approaches 
(e.g., confidence intervals vs t-testing vs paired t-testing), are derived from the same 
principles, relate to each other and can be used in a hierarchical way.  Finally, it uses a 
consistent approach across a very broad range of practical engineering problems that can 
then scale and be applied in later chemical engineering focused courses to provide better 
vertical integration.  

Conclusions 
The outcomes indicate that there are strong benefits to teaching statistics in a process 
engineering context and that this can provide vertical integration and ancillary skills 
development that provide a better downstream experience, and substantially assist with key 
graduate attributes, particularly related to addressing risk and uncertainty. 
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