
Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

Reflection and guided problem-based learning in software
engineering

Ljiljana Brankovic, Huilin Ye and Michael Reynolds
School of Electrical Engineering and Computer Science, The University of Newcastle

Corresponding Author Email: Ljiljana Brankovic@newcastle.edu.au

Structured abstract

BACKGROUND
The context of this study is a Software Engineering Project, taught in the 3rd year of BEng(Software) at
the University of Newcastle in 2011/2012. This is a two-semester course where the students work in
teams of 4-5 members to develop a real-life software application – FlightPub, a website where
customers can search for and book airline flights, as well as become members and collect loyalty
points. To succeed in such a challenging project, students need to apply all the knowledge assimilated
in their previous years, as well as to acquire other knowledge and practical skills necessary for
successful completion of the project. Contact hours consisted of a two hour lecture, a two hour
workshop and a 30minute mentor meeting for each of the teams separately, per week.

PURPOSE
The Software Engineering Project is a challenging course both for students and teaching staff, as the
tasks are open ended and teams are required to work more independently then in any of their
previous courses, and thus new teaching approaches needed to be explored and/or developed, that
would better facilitate student learning.

DESIGN/METHOD
To support the students’ needs, we developed ‘guided problem based learning’ and adopted reflective
learning approaches, both of which were assessed individually, rather than as a team. Guided
problem based learning was utilised mostly for exploring and adopting software tools, such as version
control, software frameworks, and project management software, whereas reflective learning was
assessed in the form of a reflective journal within the final report. We evaluate the effectiveness of the
teaching methods based on the overall success of the software performance, the extent to which
software tools were used in the project, as well as formal and informal feedback from the students.

RESULTS
Guided problem based learning is an effective learning approach in project based software
engineering, while reflection is extremely valuable in improving the problem solving and decision
making skills of students involved in the software development process.

CONCLUSIONS
Problem based learning naturally lends itself to software engineering projects, as the initial
requirements are somewhat ill defined and all learning is in the service of accomplishing the job.
However, pure problem based learning may not be suitable for software engineering projects, as
students may find themselves overwhelmed by the complexity of the project and the diversity of
possible directions, and thus guided problem based learning appears as a valuable alternative
approach.

KEYWORDS
Software engineering project; problem-based learning; reflective learning

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

Introduction
It is generally accepted that Software Engineering and other computing degrees are well
served with a capstone project course, and that industry based project courses are
preferable as no lab designed project can ever adequately reflect veracity of a real life
software development (Reichlmayr, 2006). The second author of this paper had been
running such a course for over 10 years, with support of industry partner Object Consulting,
one of the most reputable Sydney IT firms (Ye, 2009).

In 2011, this course was restructured as a 2 semester Problem Based Learning course, with
an emphasis on Reflective Learning. In semester 2 2011 we introduced guided problem
based learning into this course, and in 2012 we further refined our PBL and Reflective
approach. In this paper we present this journey, as well as student perception on the course
and their own learning.

The paper is organised as follows. In the next section we present previous work in the area
of Project Based Learning (PrBL), Problem Based Learning (PBL) and Reflective Learning,
and in the subsequent section we give an account of using Guided Problem Based Learning
and Reflection in SENG3150/3160 at the University of Newcastle in 2011 and semester 1
2012. In the following section we present an evaluation based on student perception of the
course and their own learning and in the last section we present some concluding remarks.

Previous Work
Project based learning in software engineering
Many IT, Computer Science and Software Engineering degrees include a capstone project
course in their 3rd or 4th year. A capstone course is indeed one of the accreditation
requirements of the Australian Computer Society (ACS/NZCS/ANZICT, 2009) and a project
course appears to fit in perfectly: Students use and integrate much of the knowledge they
acquired over the previous years, further develop and integrate skills and achieve a depth of
ICT study (Graham and Johnson, 2012).

However, it is well recognised that even the best designed academic project cannot
adequately prepare software engineering students for work in industry as it fails to capture
dynamics of building a real world application (Reichlmayr, 2006). Therefore, project courses
often have an industrial partner involved in some aspects of the project (e.g., Ye, 2009),
which can range from a modest contribution, such as a being a client for the software, to
approaching the student project as their own in-house development, treating students as
their own employees and even using their own software development team to provide
extensive testing for the student project (Johns-Boast and Patch, 2010).

Projects involving industry partners have a potential to be very successful and beneficial for
all stakeholders, including students, industry partners and academics involved. Students
have an opportunity not only to consolidate knowledge acquired at the university on a real-
life project but also to gain work experience within industry, industry partners have an
opportunity for community engagement, as well as access to potential employees and a
chance to assess them beforehand, while academics can offer more realistic and engaging
projects and foster relationships with industry (see Perrenet, Bouhuijs and Smits, 2000, and
Johns-Boast and Patch, 2010, for more discussion on benefits and issues in industry based
student projects).

However, despite all the benefits of the project-based learning, students may find this
approach challenging as they have to cope with tasks that are not clearly defined and work in
teams whose members learning needs may not match their own, while academic staff and
universities may hesitate to embrace this approach due to its high resource requirements
and huge effort needed by the teaching staff (Nepal and Jenkins, 2011).

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

Reflection in software engineering
It has been suggested that reflective learning goes back to the 1st century and the Roman
Emperor Marcus Aurelius Antoninus whose famous work “Meditations” can be seen as a
reflection of his role as Emperor, and his life in general (Mac Suibhne, 2009). In modern
times, much of the background work in reflective learning was laid by John Dewey in his
seminal book “How We Think. A restatement of the relation of reflective thinking to the
educative process” (Dewey, 1933). The term ‘reflective practice’ was coined by Donald
Schön in his two renowned books: “The reflective practitioner - how professionals think in
action” and “Educating the Reflective Practitioner: Towards a New Design for Teaching and
Learning in The Profession” (Schön, 1983, 1987). Schön introduced what he called
“reflective practitioner’s perspective” and argued that professionals such as architects,
musicians and others can benefit from reflecting both on their creative practice and on their
thinking about their creative practice.

In the area of software engineering, reflective practice was first introduced by Hazzan (2002)
and subsequently was explored by Hazzan and Tomayko (2003), Hazzan and Tomayko
(2004), Hazzan and Dubinsky (2009), and others. The main focus of reflection in software
engineering is two-fold: (1) improving of “one’s understanding about one’s own mental
processes” in order to improve one’s managing of complexities of software development, and
(2) increasing “one’s awareness of one’s own mental processes as well as of the mental
processes of others” in order to advance communication among team members in software
development teams (Hazzan and Tomayko, 2004).

Problem-based learning in software engineering
Problem-based learning (PBL) was first designed at McMaster University for teaching
medical students in the 1960’s. Since then, PBL has spread into other universities and other
areas, including business and engineering. While there is no consensus among education
researchers and practitioners about the precise definition and interpretation of PBL, at least
partly because its methodology heavily depends on the area to which it is applied (O’Grady,
2012), in practical terms PBL is commonly understood as a process where students are
presented with a problem and independently or through a discussion in small groups they
themselves identify what they need to learn to solve the problem. The instructor assumes a
role of a mentor while students embark on journey of independent learning to gain
knowledge required for solving their problem.

Considering adoption of PBL in computing curricula, O’Grady (2012) argues that the
adoption of PBL is superficial and ad hoc, mostly because it is reduced to isolated efforts of
teachers striving to improve individual courses. Recent case studies of PBL in software
engineering include Richardson and Delaney (2009) and Qiu and Che (2010).

While Problem-based learning is recognised as a powerful strategy providing deep insight
and active learning, as well as acquisition of skills for solving real life problems, it is often
perceived by students as challenging and could affect their satisfaction with the course. In an
interesting study comparing traditional lecture-tutorial engineering courses with their blended
project/problem based learning (Pr/PBL) equivalents over two subsequent years, Nepal and
Panuwatwanich (2011) discovered that while overall students perform better in P/PBL
courses, they rate traditional lectures-tutorial courses more highly, and that at least 1 in 8
surveyed students who believe that Pr/PBL style has improved their job readiness would
have preferred to do the traditional lecture-tutorial course instead. This can, in turn, affect the
readiness of academic staff to embrace PBL and Pr/PBL, as their career opportunities and
promotion outcomes are typically tied with student evaluation of their teaching (Nepal and
Panuwatwanich, 2011).

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

Guided problem-based learning and reflection in
SENG3150/3160
The two one semester courses, SENG3150 Software Project I and SENG3160 Software
Project II, emerged from a previous one semester third year project course at the University
of Newcastle (see Ye, 2009). Students worked in groups of 4 or 5 and used some of the
industry software process provided by the our partner Object Consulting Pty Ltd, with whom
we have a long standing collaboration (Ye, 2009). At the end of the second semester,
representatives of Object Consulting attended the final project presentations and
demonstrations, gave generous feedback to students, selected the best project and the
runner-up, and presented the winning team with a $1500 prize. This did not have any effect
on the marks which were allocated independently by the teaching team.

The project was a real-life software application FlightPub, a website where customers can
search for and book airline flights, as well as become members and collect loyalty points.
Object Consulting had first-hand experience with this project as they developed similar
software a couple of years earlier.

Each week students had 2 hours of lectures, 2 hours of workshops and at least a thirty
minute mentor meeting for each team separately. The assessment in our software project
courses was in two forms: team assessment, consisting of a few assessment items (e.g.,
requirements document, testing plan, etc.) and comprising 50% of the final mark, and
individual assessment, including PBL report and Reflection Journal.

Throughout each semester, a number of industry seminars were run, some of them
presented by University of Newcastle alumni who are now established software
professionals, or even run their own successful businesses. These seminars were well
received as they motivated and inspired our students, introduced them to the local software
industry, and gave them an insight into real life software projects and solution approaches.

Project-based learning naturally lends itself to the software project-based learning
environment, as the whole process is focused around the project that is not only a starting
point but remains the motivation and purpose of the student learning. In the case of our
software project, the separate weekly mentor meeting with each team, in addition to regular
two-hour workshops provided an opportunity for regular guidance and feedback from the
mentor (tutor, lecturer). Moreover, the first time the course ran we supported students by
providing weekly learning goals, as well as recommended resources. However, PBL can be
daunting for students used to a traditional lecture-tutorial learning environment. In the rest of
this section we will outline the modifications and additions we introduced to the second and
third course offerings to make it less confronting and effective for the novice student users.

Guided problem-based learning
One of the main propositions of PBL is that students themselves identify the knowledge they
need to acquire in order to solve the PBL problem, which in our case amounts to developing
a real life software application. While in their prior years of study students learned the
theoretical basics of software development and design, they did not have an opportunity to
practice doing it beyond academic lab exercises and assignments. In the ever-changing
world of software engineering, there is an overwhelming amount of approaches, practices,
issues, development models and potential tools that may be useful for the project. To assist
the students in finding their way around these diversities, we introduced an approach that we
termed “Guided Problem Based Learning” or GPBL, were we set a PBL “task” to be done
and assessed individually but which would nevertheless provide benefit to the whole team
and not just the individual student.

More specifically, in Semester 2, 2011 we gave students a set of 3 topics: (1) software and
quality metrics; (2) risk management; and (3) software tools. Each student was at liberty to
choose a topic, as long as in each team there was at least one student for each of the topics,
and preferably two students for software tools. The students were instructed to research their

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

topics and present their findings in a report. Furthermore, the students were encouraged to
prepare at least 2 drafts of the report and seek feedback from the lecturer/tutor before
submitting the final version of the report. This was used as an opportunity to provide
guidance to the students in their independent knowledge acquisition, as well as developing
report writing skills. This appeared to work very well for the students, but it was very
demanding on the teaching staff, and it was only possible due to the relatively small class
size (14).

Using this initial experience, in 2012 the topics were reduced to software tools/technologies
only, as these proved to be by far the most beneficial for the project. The teams were
encouraged to discuss the tools/technologies and decide which categories are most likely to
benefit the project and thus should be explored. The topics should have been chosen in such
a way that each such tool category is selected by at least one team member in each team.
Each individual report was required to present a brief overview of software tools, clearly
show where the selected tool category fits into the big picture and give the pros and cons for
using such tools in the project. Then the report should go on to present at least two specific
tools/technologies (or, if that is not applicable, at least two alternatives appropriate for the
project) and compare them in terms of benefits and drawbacks to the project. The report
should then draw clear conclusions as to which alternative should be selected for the project.
Again, students were encouraged to prepare at least one draft of the report and seek
feedback from the lecturer before submitting the final version of the report.

Reflection
Reflection has been an integral part of SENG3150/3160 from the outset of the course, and it
was intensified in each new semester the course ran. In semester 1 2011, 30% of the total
mark came from the “Final Report” which was a part of the individual assessment. Students
were instructed to describe the context of the project, what they learnt, how they applied that
knowledge to the project, the results they achieved, their individual contribution, the
limitations of the completed work and how it could be improved/extended.

In Semester 2, 2011, we added an “Individual Reflective Journal” whose name was chosen
to emphasise the importance of reflection. Students were urged not only to look back and
identify what in their project worked well and what could have been done better/differently,
but also what are the things for watch out for, why something came about, and how their
understanding/opinion developed over time.

In addition to journals, we introduced diaries for students to fill in and submit each week as a
part of their individual assessment. We provided a diary template consisting of tables to
record class, team and individual activities related to the course, as well as three text boxes
marked “Reflection on the Project”, “Reflection on the Team” and “Reflection on the Course”.
The diaries were worth only 4% of the total mark and students would score either 4% if they
submitted at least 80% of the diaries, regardless of their content, or 0% if they failed to do
that. Therefore, there was little incentive to maintain the diaries in terms of marks, but the
students were repeatedly reminded that diaries will be very helpful for the Individual
Reflective Journal worth another 10%, and most students were submitting the diaries
regularly. Note that the total mark for reflection was reduced from 30% to 14% because we
also introduced “Problem Based Learning Report” as a part of individual assessment; this
reduction does not indicate in any way a reduction of the emphasis on reflection.

In 2012, the weightings of the assessment items were again revised and the Final Report
with a strong emphasis on Reflection, together with diaries and course participation, was
allocated 30% of the total mark, and students were encouraged to reflect on the project,
team, themselves, and the reflection process itself.

Evaluation
The evaluation of the two courses, SENG3150/3160 Software Project I and II, is based on:
(1) Student Feedback on Courses (SFC) collected by the university on all its courses; (2)

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

student performance in the courses; (3) the extent to which the software tools have been
used in the project; (4) the opinions expressed by students in their diaries and reflective
journal. We will use this 4-fold evaluation to analyse the progression of student performance,
as well as their satisfaction and opinions about the courses, and to evaluate the
effectiveness of Guided problem-based learning and reflection in software project courses.

At the University of Newcastle, SFC comprises a number of questions to evaluate the
student perception of courses. For each question, students can choose one of the following 5
answers: 1) strongly disagree; 2) disagree; 3) neutral; 4) agree; and 5) strongly agree. In the
presentation of the SFC results we will use a number scale from 1 to 5 for the sake of clarity,
where typically 5 is the most and 1 is the least desirable. We present student responses over
3 semesters: 2011 semester 1, 2011 semester 2, and 2012 semester 1, where class sizes
were 17, 14 and 21 students, and response rates 59%, 43% and 24%, respectively.

Figure 1: “Overall, I am satisfied with the

quality of this course”

Figure 2: “I made a consistent effort to
succeed in this course.”

Figure 1 shows the overall student satisfaction with the course and a clear and steady
improvement in the student perception of SENG3150/3160 over the 3 semesters.

Figure 3: “My knowledge and skills have

developed as a result of studying this
course.”

Figure 4: Distribution of students’ grades

Figures 2 and 3 illustrate students’ perception of their own effort and growth in the software
project course. It appears that the students’ estimate of their own efforts and acquired
knowledge and skills also improved from the first to the third course offering. It also appears
that the average rating of the course satisfaction (Figure 1) grows with the average ratio of
the effort (Figure 2) and knowledge and skills acquired (Figure 3). It is interesting to compare
this with the distribution of student grades over the three semesters (Figure 4). It can be
noticed that the grade distribution is very similar in semester 1 2011 and semester 1 2012,

0%

20%

40%

60%

1 2 3 4 5
2011 sem 1 2011 sem 2 2012 sem 1

0%

20%

40%

60%

80%

100%

1 2 3 4 52011 sem 1 2011 sem 2 2012 sem 1

0%

20%

40%

60%

80%

100%

1 2 3 4 5
2011 sem 1 2011 sem 2 2012 sem 1

0%

20%

40%

60%

80%

100%

HD D C P
FF

W
2011 sem 1 2011 sem 2 2012 sem 1

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

while the student satisfaction and perception of their own effort and learning differs
significantly. This is consistent with the study performed by Nepal and Panuwatwanich
(2011) whose results indicate that there is no relationship between course evaluation and
actual performance.

To gain an insight into how much effect guided problem based learning had on student
performance we evaluate the extent to which the software tools have been used in student
projects. This is only relevant to the semester 2 2011 where the students implemented and
tested the FlightPub. Note that using software tools was not compulsory, but it was
encouraged and facilitated by the Guided Problem Based Learning task. There were 3
student teams and two of them used at least 4 different software tools/technologies each,
while the remaining team used only an Integrated Development Environment (Table 1).

Table 1: A summary of software tools/technologies used by each team

Software
tools/technologies

Team
1

Team
2

Team
3

IDE x x x

Version Control x x

Issues Management x

Testing x

Struts x

Hibrenate x

Finally, we look at students’ reflection journal for more insight into their perception on
courses and effectiveness of Guided Problem Based Learning. The prevailing opinion
expressed by students was that the Software Project courses were, on one hand, very
demanding and time consuming, and, on the other hand, very rewarding and the ones where
they learned more than in any other course during their degrees.

I believe SENG3160, be it the most time consuming course I have ever taken, is the truly most
important course a graduating Software Developer could take in their degree.

I will remember FlightPub as the project that began my software development career.

There were so many positives to this semester that outweighed the extreme time that was required.

In particular, students felt that the Guided Problem Based Learning where they had to
research software tools/technologies was very helpful to their project, and that the tools and
new technologies themselves were invaluable, even if their team did not use them. This was
generally not the case with the alternative topics of Risk Management and Software Metrics.

Firstly, the introduction of tools (although not compulsory) was excellent.

In reflection, I can see how valuable writing the problem based learning report was. My team
actually used knowledge I gained from all three sections of my report in our project.

I would estimate that without the tools (subversion /fogbuz/Junit/eclipse) the group would only have
achieved 80% of their potential.

Tools are invaluable. Our group achieved the perfect harmony.

 It was about this time of the semester where I began to regret not picking up any extra
development tools such as a repository backup, automated testing tools or some other such tool.

Discussion
We looked at the student perception and performance in SENG3150/3160 over the three
semesters from Semester 1 2011 to Semester 1 2012.

On one hand, there are no big differences in student performance, as measured by the grade
distribution, between two offerings of SENG3150 in semester 1 2011 and semester 1 2012.
The grade distribution For SENG3160 offered in semester 2 2011 is quite different from the

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

two offerings of SENG3150, due to the fact that this is the second part of the two semester
course where students implement and deliver the project, and typically students are more
enthusiastic and committed to the project. Additionally, the members of the weakest team
from semester 1 2011 either did not re-enrol in semester 2 2011, or joined strong teams,
which affected the grade distribution.

One the other hand, there are big differences in student perception of the SENG3150/3160
courses over the three semesters. Relating the SFC to student opinions expressed in their
reflective journals, it appears that the students perceived the SENG3150/3160 as two very
demanding and time consuming courses, with huge workload and little guidance, which likely
contributed to the early dissatisfaction with the courses. However, the introduction of Guided
problem-based learning was perceived as very helpful useful for the project, which is further
supported by the large extent to which the software tools have been used in SENG3160 in
Semester 2 2011.

There are two additional factors that might have influenced student perception of
SENG3150/3160 courses. First, there were altogether there teaching staff, where semester 1
2011 offering was taught by one of the staff, semester 2 2011 by the other two, while the
semester 1 2012 was taught by all three staff. Thus the continues improvement of the
student perception of the course cannot be explained by potential student preferences for
particular teaching staff, but it could indicate that having more teaching staff on board is
beneficial for project courses. Secondly, in semester 1 2012 we altered the software
methodology to incorporate elements of agile development, which was preferred by students,
and thus can account for more favourable evaluation of semester 1 2012 than semester 1
2011 offering, however, it cannot explain the continues improvement of the course
evaluation.

Conclusion
Problem-based learning naturally lends itself to software engineering projects, as the initial
requirements are somewhat ill defined and all learning is in the service of accomplishing the
job. However, pure problem based learning may not be suitable for software engineering
projects, as students may find themselves overwhelmed by the complexity of the project and
the diversity of possible directions, and thus guided problem based learning appears as a
valuable alternative approach.

References

ACS/NZCS/ANZ ICT (2009) Accreditations Manuel. Document 2A: Application Guidelines –
Professional Level Courses. Retrieved September 18, 2013, from
http://www.iitp.org.nz/news/uploads/PDFs/DegAcc/2-ApplicationGuidelines.pdf

Dewey, J. (1933). How We Think. A restatement of the relation of reflective thinking to the educative
process, Boston: D. C. Heath.

Graham, R. and Johnson, M. (2012). Australian Computer Society Accreditation Report. Retrieved
September 18, 2013, from http://www.acdict.edu.au/documents/RuthAndMike ACSAccreditation
ReportJuly2012v3.pdf

Hazzan, O. (2002). The reflective practitioner perspective in software engineering education. The
Journal of Systems and Software, 63(3), 161-171.

Hazzan, O. and Dubinsky, Y. (2009). Reflection in Software Engineering Education. Proceedings of
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’09), Orlando, Florida, USA , 25-29 October 2009, 691-692.

Hazzan, O. and Tomayko, J. (2003). The reflective practitioner perspective in eXtreme Programming.
Proceedings of the XP Agile Universe 2003, New Orleans, Louisiana, USA, 51-61.

Hazzan, O. and Tomayko, J. (2004). Reflection Processes in the Teaching and Learning of Human
Aspects of Software Engineering. Proceedings of the 17th Conference on Software Engineering
Education and Training (CSEET’04), 1-7.

Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © Brankovic, Ye and Reynolds, 2013

Johns-Boast, L. and Flint, S. (2009). Providing students with 'real-world' experience through university
group projects. In Proceedings of 20th Australasian Association for Engineering Education
Conference (AAEE), Adelaide, South Australia, 6-9 December 2009, 299-304.

Johns-Boast, L. and Patch, G. (2010). A Win-Win Situation: Benefits of industry-based group projects.
In Proceedings of 21st Australasian Association for Engineering Education Conference (AAEE),
Sydney, New South Wales, 5-8 December 2010, 355-360.

Mac Suibhne, S. (2009). 'Wrestle to be the man philosophy wished to make you': Marcus Aurelius,
reflective practitioner. Reflective Practice, 10(4), 429-436.

Nepal, K. P. and Jenkins, G. (2011). Blending project-based learning and traditional lecture-tutorial
based teaching approaches in engineering design courses. In Proceedings of 22nd Australasian
Association for Engineering Education Conference (AAEE), Fremantle, Western Australia, 5-7
December 2011, 338-343.

Nepal, K. P. and Panuwatwanich, K. (2011). Comparative study of project-based learning and
traditional lecture-tutorial teaching approaches in undergraduate engineering courses. In
Proceedings of 22nd Australasian Association for Engineering Education Conference (AAEE),
Fremantle, Western Australia, 5-7 December 2011, 351-356.

O’Grady, M. J. (2012). Practical Problem Based Learning in Computing Education. ACM Transactions
on Computing Education, 12(3), 10:1-10:16.

Perrenet, J.C., Bouhuijs, P.A.J. and Smits, J.G.M.M. (2000). The suitability of problem-based learning
for engineering education: theory and practice, Teaching in Higher Education, 5(3), 345-358.

Qiu, M. and Che, L. (2010).A Problem-based Learning Approach to Teaching an Advanced Software
Engineering Course. In Proceedings of Second International Workshop on Education Technology
and Computer Science, IEEE, 252-255.

Reichlmayr, T. J. (2006). Collaborating With Industry – Strategies for an Undergraduate Software
Engineering Program. In Proceedings of SSEE'06, Shanghai, China, 20 May 2006, 13-16.

Richardson, I. and Delaney, Y. (2009).Problem Based Learning in the Software Engineering
Classroom. In Proceeding of the 22nd Conference on Software Engineering Education and
Training, IEEE, 174-181.

Schön, D. A. (1983). The reflective practitioner - how professionals think in action. Basic Books.

Schön, D. A. (1987). Educating the Reflective Practitioner: Towards a New Design for Teaching and
Learning in The Profession. San Francisco: Jossey-Bass.

Ye, H. (2009). An Academia-Industry Collaborative Teaching and Learning Model for Software
Engineering Education. In Proceedings of the 21st International Conference on Software
Engineering and Knowledge Engineering (SEKE), Boston, USA, 1-3 July 2009.

Copyright statement
Copyright © 2013 Brankovic, Ye and Reynolds: The authors assign to AAEE and educational non-profit institutions a non-
exclusive licence to use this document for personal use and in courses of instruction provided that the article is used in full and
this copyright statement is reproduced. The authors also grant a non-exclusive licence to AAEE to publish this document in full
on the World Wide Web (prime sites and mirrors), on Memory Sticks, and in printed form within the AAEE 2013 conference
proceedings. Any other usage is prohibited without the express permission of the authors.

