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Structured abstract 
BACKGROUND  
The underlying problem hampering engineering students’ success in problem solving is an inability to 
apply theoretical mathematical knowledge, rather than a lack of proficiency in basic mathematics. The 
integration of mathematics with engineering applications is still an issue for large scale programs as 
well as for universities in the initial stages of curriculum reform. This is because in order to teach 
integrated thinking, courses need to use problems that effectively combine both mathematical and 
engineering concepts. However, the creation of such problems imposes a significant cognitive load on 
a single teacher, or it requires expertise from more than one discipline to be combined, requiring 
collaborative time and effortful thinking and working through issues between teachers from different 
disciplines. It is the cognitive effort, the time required and the pitfalls involved in collaborative 
endeavours that often creates blocks to interdisciplinary integration in teaching.  

PURPOSE 
A small team of mathematics and engineering teaching staff attempted such collaboration to see if it 
would be possible to develop maths-engineering integrated problems in five discipline areas that 
would enhance the students’ ability to apply mathematics to engineering problems and to improve 
their learning experience in a required mathematics course. 

DESIGN/METHOD  
These problems were used for assignments within a mathematics course, with the aim of helping 
students to learn how to use mathematics inside of engineering problem solving processes. Students 
worked in small groups and extra tutorial support was given to help the students through the problem 
solving processes. Marks were compared for first and second year mathematics and for the related 
chemical engineering course for the experimental cohort versus a control cohort. In addition, students 
were surveyed about the benefits of the integrated mathematics course immediately after the course, 
then were asked about its relevance when doing a later chemical engineering course where the 
mathematics was being repeated, and then, near graduation, were surveyed again about the effect of 
these applied problems on improving their understanding and ability to apply theory to real world 
problems 

RESULTS  
Results suggested benefits of the integrated mathematics course for learning in the mathematics 
course itself as well as carry over effects for the related chemical engineering course for the 
experimental cohort compared to their traditionally taught peers. Survey results showed that in the 
long term, more than two thirds of engineering and mathematics students agreed that the problems 
improved their ability to apply mathematics.  Most students agreed that the projects helped them to 
obtain a deeper understanding of mathematics, but that they would have learned more had the 
problems been more directly/explicitly linked to their later engineering courses. 

CONCLUSIONS  
The work involved in creating applied dimensional problems that integrated a foundational 
mathematics course with related engineering courses was worthwhile, resulting in benefits for 
students in learning mathematics as well as in some longer term benefits for students needing to use 
mathematics in a related chemical engineering course. Four problems from chemical, civil, 
mechanical and electrical engineering are appended, which can be adapted and applied in other 
universities.   
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Introduction 
The Accreditation Board for engineering and Technology (ABET) stresses that a [proficient] 
engineering graduate must have the ability to apply their knowledge of science, mathematics, and 
engineering (ABET., 1995). In spite of these standards, there is a widespread perception that 
engineering students frequently lack the ability to apply mathematics to engineering problems both 
during their course and when they leave university (Kumar & Jalkio, 1999; Lang, Cruse, McVey, & 
McMasters, 1999).  This can in part be attributed to the traditional methods used for teaching 
mathematics, as these predominantly teach courses in compartmentalised courses (Dugger, 2010), 
use non-dimensional variables, and they mostly consider idealized models which are only introduced 
briefly. Associated demonstration problems use simplified versions of real world situations, with most 
of the fuzzy or difficult issues removed so as to highlight the need for a particular equation or 
principle. Traditional methods do not explicitly teach problem solving skills (Hyslop, 2010). Together 
these conditions may foster procedural learning (where students apply the appropriate equations by 
substituting values into variables and then work through a learned procedure), rather than deep 
learning (where students need to understand why the specific variables are relevant to the problem as 
well as the relationships between those variables (Mayer, 1992; Pape & Smith, 2002). 

The more abstract method for teaching mathematics is often seen to be the most general and 
relevant to a broad range of disciplines. At many institutions worldwide, including the site of this study 
(a large Australian university) mathematics at first and second year level is taught in large classes 
which include students from many disciplines such as science, engineering, physics, and 
mathematics (Kumar & Jalkio, 1999). Because of other science and engineering discipline demands, 
the often substantial mathematical content is compressed into two or three courses (about 80-120 
lectures).  The teaching of mathematics in a self-contained manner is efficient for covering a broad 
range of topics, and highlighting the mathematical interconnections amongst these topics.  However, 
it has a number of disadvantages that contribute to student’s difficulties in translating problems into 
mathematical descriptions within applied disciplines where a degree of modelling is required.    

One disadvantage (perhaps the most important), is that most first- and second-year mathematics 
lectures, tutorial problems, and assignments are presented in dimensionless variables.  It is easier to 
formulate a problem using dimensional variables, as the dimensions of each term of an equation 
inform about magnitudes, and also provide a critical “parity” check on reasoning and calculations.  
However dimensionless problems are easier to solve, and the distillation of the “physics” into 
dimensionless constants provides information about the underlying mathematical problem. However, 
dimensions are generally omitted from “applied” undergraduate problems for a number of reasons.  
Firstly, for efficiency: it is time consuming to carry many dimensional constants throughout the 
calculations. Secondly, constants would become tedious when conducting exercises (e.g., on the 
many techniques of integration or differentiation).  The alternative, of teaching students about non-
dimensionalisation (and then re-dimensioning an answer for interpretation), is conceptually 
challenging and hard to teach to early undergraduate students.  The topic tends to be taught in 3rd 
year when students have sufficient mathematical maturity to rescale problems involving integrals and 
differential equations. 

As well as using dimensional variables, there are other ways that mathematics can be more closely 
linked to applications in order to enhance student learning. Since the early 1990’s the NSF in the US 
has been funding university-wide coalitions attempting to integrate mathematics, engineering and 
other disciplines via reorganisation of the curriculum (e.g., Froyd, 2001). This integration has occurred 
in many different forms: within programmes, by coordination of topics, and through assessment (Al-
Holou, Bilgutay, Corleto & Demel  et al, 1999).  There have also been other attempts to create 
integration of maths and engineering at the course level using scenario-based, problem-based and 
project-based learning (Bell, Galilea, & Tolouei, 2010; Mills & Treagust, 2003; D.R. Woods, 1997; D. 
R. Woods et al., 1997). All of these methods are variations’ of ‘inductive’ learning approaches and all 
have shown significant measures of success (Prince & Felder, 2006). 

Many of the integrated curriculum approaches have shown positive outcomes in terms of improved 
GPA’s and reduced retention rates (Al-Holou et al., 1999). In spite of this apparent evidence for 
improvements in student ability and understanding, few advances have been made towards 
integration on a wide-scale and ‘engineering education remains predominantly dependent upon 
narrow, discipline-focused undergraduate programs' (Duderstadt, 2008, p iii). Subsequently, national 
reviews are still highlighting the need for the integration of disciplines (e.g., Universities Australia, 
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2011) and the application of better teaching methods for teaching mathematics in STEM (e.g., 
PCAST, 2012). 

There are many possible explanations for the lack of uptake of integration between mathematics and 
engineering, despite the known educational benefits. Firstly, as evidenced by the coalition attempts, 
integrating mathematics and engineering across the curriculum requires substantial resourcing, 
leadership and support at high levels. Secondly, when the topics are coordinated by creating real-
world projects that apply mathematics to engineering, they often include mastery of other ‘real world’ 
skills such as team work or using MATLAB. While these are valuable skills to integrate with 
mathematical ability, they detract from the core business of applying the maths to the engineering 
problem and thus reduce the students’ chances to gain technical understanding (Kjersdam, 1994; 
Mills & Treagust, 2003). 

There are a number of reasons why teaching in an integrated fashion assists student learning 
(Everett, Imbrie, & Morgan, 2000), including students’ cognitive processes. For example, students are 
often only able to assimilate information across disciplines when they are given a framework that 
helps them to see the connections. Integration of applications into mathematics teaching enhances 
student learning by making these connections and thus attaching new information to existing 
knowledge (Prince & Felder, 2006). Moreover, once a student has persevered to link two ideas, these 
ideas are not easily disconnected (Coppola, Ege, & Lawton, 1997).   

The theory above (e.g., Prince & Felder, 2006) suggests that there is a need for teachers to actively 
help students to create the required cognitive connections between concepts in maths and in 
engineering. Consistent with this theory, a more in-depth analysis of integration programs has shown 
that there have been varying levels of success in integrating topics which are dependent on the 
methods that have been used for assimilation (McKenna, McMartin, Terada, Sirivedhin, & Agogino, 
2001). The results of this study show that the less successful attempts at coordination of topics occur 
when one course in a program is merely designed so as to contain the information that is needed by 
another; e.g. the maths that is needed in an engineering course is taught in a separate maths course 
in a purely mathematical manner. In such cases, the links across the topics are not made explicit for 
the students; rather students are left to discover the links for themselves. As one student commented: 

 You don’t see the lines between classes and subjects anymore. It takes a while, because 
around here, you’re forced to discover that on your own. Classes are rarely, to never, tied into 
each other... (McKenna et al. p. 8).  

On the other hand, the more successful programs teach the maths next-to or inside the engineering 
or visa-versa (Laughlin, Zastavker, & M., 2007; McKenna et al., 2001). For example: 

..in Math 1B when we were covering differential equations, at the same time in physics 7A we 
were covering springs and oscillating springs. The two concepts are very closely linked. So 
we could see essentially the same examples in both classes which made it easy to relate. So 
I thought that the synchronization helped reinforce the concepts and show us an application 
for the math that we were learning. (McKenna et al. p 8-9.) 

Teaching mathematics while at the same time teaching solutions to engineering problems is central to 
the cognitive integration process that needs to occur for students; example, teaching double 
differentiation while analysing the distance travelled by a piston in an engine, so as to use 
differentiation to convert distance to velocity and then to acceleration. By teaching in this way, 
students can 'see' the mathematics in terms of the real world example; in this case, they can see the 
motion of a piston mapped to differentiation calculations. However, teaching of dual content is the 
hardest aspect of the subject integration for the teachers. This is because the lesson and assignment 
preparation requires the creation of authentic example problems that target specific mathematical 
skills. Consequently, there are few published examples of problems that have been devised to 
illustrate how maths can be applied to engineering. There are some on the coalition websites (see Al-
Holou et al., 1999 for a full list of the coalition websites) and some detailed examples in the literature 
(e.g., Mourtos, DeJong-Okamoto, & Rhee, 2004; Otung, 2002). However, there are far more 
examples of design principles being integrated with mathematics or engineering  (e.g., Shamel & Al-
Atabi, 2003; Sheppard & Jenison) than of mathematics being integrated with engineering applications. 

Generating integrated, dimensional problems in mathematics is significantly more difficult than writing 
tutorial problems for either engineering or mathematics courses. It takes substantial time to translate a 
meaningful engineering problem into a mathematical framework for effective learning, because it 
requires knowledge of both the engineering problem and the mathematics.    The intellectual process 
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required in devising such problems is complex. It requires recognition of the higher-order relationships 
that are common to both the mathematics and engineering problems. These relationships need to be 
extracted and used to map the two different problem domains (mathematics and engineering) onto 
each other  (Gentner, 1983; Halford, 1982). This intellectual process is a “hard” task and takes 
substantial cognitive effort (Johnson-Laird, 1989). The hard aspect of the mapping task makes it 
difficult for students to recognise the common relations across the different problem domains on their 
own (Holyoak, 1986). This explains why students need help from teachers to make these 
connections, and also, why the task of creating such problems is difficult even for lecturers with 
expertise in their own knowledge domains. Thus this task cannot be outsourced to tutors or junior 
teaching assistants.    

In spite of the challenges, we believe that the core business of integrating mathematics and 
engineering can be achieved on a small scale, if individual lecturers are able to successfully 
collaborate with one or two other teaching staff spanning the mathematics-engineering divide.  This 
paper demonstrates that mathematics and engineering teaching staff can work together to create 
authentic problems which enable students to apply core mathematical concepts and problem solving 
skills.   We investigated whether the application of these problem sets in a second level compulsory 
mathematics class had positive effects on student’s problem solving and mathematics skills. 

Curricular approach 
This study was undertaken in an Australian university in 2008, in a second level mathematics course 
“Calculus and Linear Algebra II”, a compulsory course for approximately 800 undergraduate 
engineering and 150 mathematics and physics students.    

In order to integrate engineering contexts into a second year mathematics course on a small scale, 
the decision was made to use engineering problems to teach mathematics, to see whether this type of 
integration would help students to learn to formulate mathematics when needed in engineering 
contexts. To this end, five discipline related problems were collaboratively developed by lecturers in 
mathematics, chemical, civil, mechanical and electrical engineering. (A full description of problems is 
outlined in the Supplementary material, Appendix A.)  Each problem involved developing and 
evaluating or solving integrals or differential equations, and interpreting the physical meaning of the 
mathematics results within the context of a real world engineering problem.   For example, in the pipe 
problem, mathematics was used to solve a problem in thermodynamics. The solution required 
integration of the heat equation, so as to determine the temperature profile in the pipe wall.  Then the 
steady state solution needed to be used so as to calculate heat loss from the pipe under a range of 
scenarios, and to determine how the thickness of the pipe wall, the material of construction, and 
dimensions of the pipe would affect heat loss and associated GHG emissions.  In the mathematics 
course, these concepts needed to be developed, not from physical understanding, but from the 
mathematical equations.  In the subsequent year of study, the chemical engineering students then 
undertook the same problems but from a physical basis, where mathematics was the tool used to 
analyse the physical problem.  
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Table 1: Description of the applied mathematics problems used in this study, and the 

discipline from which the problems originated 

Problem  Problem 
source 
(discipline) 

Problem description 

LRC circuit  Electrical 
engineering 

Calculate voltage and current in an LRC circuit, which is a circuit 
containing a resistor, inductor and capacitor connected in series.

Heat loss 
from pipe 

Chemical 
engineering 

Determine rate heat loss from a pipe, and how this varies with pipe 
thickness and material properties 

Satellite   Mechanical 
engineering 

Calculate the centre of mass and moment of inertia of a satellite 

Dam water 
depth 

Civil 
engineering 

Calculate the dynamic level of a reservoir in response to changes in 
inflows and outflows, through formulation of simple rate models, and 
answering specific questions relating to the physical meaning of the 
results

Winding 
Number 

Mathematics  The winding number is a characteristic of a closed curve. The project 
did not involve a modelling component, or dimensional variables, and 
was included as an option for non-engineering students in the class 
who were more interested in abstract mathematics. 

Similar mappings between the mathematics and the physical world were used to construct all 
problems. Two of the problems were drafted by engineering lecturers, and finalised by the 
mathematics course co-ordinator in consultation with his colleagues in engineering to ensure that both 
mathematical learning objectives were met.   Additional funding from a faculty strategic project 
(“Supporting at-risk students and increasing engagement in second year mathematics”) was available 
to pay tutors for project development.  However extensive teaching experience and familiarity with 
course objectives and content was required, hence the task was found to be beyond the scope of 
tutors.  About six hours work by the engineering colleague and ten hours by the mathematics course 
co-ordinator was required to finalise each problem and to write solutions.    

For the integrated maths course assignment, students were required to complete their chosen 
problem, in a small group of two-four chosen members.  The assignment accounted for 10% of their 
final grade. Additional tutoring was provided, with 2 hour drop-in sessions available for each specific 
project for the 3 weeks of the project duration. Specialist tutors, generally drawn from the engineering 
disciplines, were used for the project. This was done because the application areas were outside the 
scope of the regular course syllabus, and we wanted to ensure that the important context of the 
problems was able to be supported by the tutors. 

Data and Methods 
The impact of the project on student learning was assessed in two ways, using both quantitative 
(student marks) qualitative (student surveys) and data, described below  

Analysis of Marks The integrated mathematics course being considered for analysis was a second 
year course that was run in semester1 2008. The related chemical engineering course was run one 
year later in semester 1 2009. In an attempt to ascertain the benefits of the integrated maths course 
over a normal maths course, the effects of the course on the students who participated (called the 
‘experimental group’) were compared with the effects on students who did the same courses a 
semester or a year later, in a traditional non-integrated way (called the ‘control group’). We 
investigated 1. improvements in marks from a first year course to the second year course for the 
experimental group versus the control group, and 2. marks in the integrated mathematics course and 
in the related chemical engineering course for the experimental group versus the control group. 



 
Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © McCredden, O’Brien and Roberts, 
2013 

 

Student surveys Suspecting that students would have different impression of the benefits of a group-
based, open-ended applied assignment immediately after it had been completed, than they would 
have had later on, we took data on student impressions of the assignment at varying intervals: 
• Short-term: One month after project completion, the entire class was surveyed about whether 

the project was worthwhile, rewarding, an appropriate level of difficulty, and about the nature of 
the group work. 

• Medium term: One year after project completion, 31 chemical engineering students who had  
completed the “heat loss from a pipe” project were asked whether the project improved their 
understanding of the material taught in a heat transfer course. 

• Long-term: 30 months after project completion (immediately prior to graduation), 115 students 
completed a survey about how the project affected their mathematics and problem-solving 
skills.   Results were analysed according to student discipline (chemical, civil, mechanical 
engineering, maths, or ITEE: information technology and electrical engineering), and according 
to the project selected (heat loss from a pipe, water storage in a dam, centre of mass and 
moment of inertia of a satellite, winding number, and  properties of LRC circuits. 

Results  
Analysis of marks 

First to second year mathematics: To investigate the benefits of the integrated course over the 
students’ previous experiences (based on a comment from a student), we investigated whether 
students who had competed the pre-requisite first year course benefited from the integrated second 
year course. That is, we compared the first year to second year shift in marks for the experimental 
group (2007/8) with the corresponding shift for several traditionally run versions of the course. 
Comparisons were made between all first and second year courses from 2005/6 up until 2012/3. The 
results for the experimental group and for the 2005/6 and 2008/9 cohorts are summarised in Figure 2 
below, in terms of the distributions of marks for the first and second year courses, along with the 
associated within groups t-tests. The full set of comparisons for all years is shown in Appendix B. 

 

Group 

 

First year math grades 

 

Second year math grades 

 
Mean1 to Mean2 shift 

& 
Within subjects t-tests

 

Control group 
(Same 
lecturers as 
experimental 
group) 

First year 
2005 

Second year 
2006 

  

  4.64 to 4.64 
  No change 
  t_21 = 0.0; p = 1.0 
  NS 

Experimental 
group 

(Integrated 2nd 
year course) 

First year 
2007 

Second year 
2008 

     

  4.54 to 4.92 
  Increase 
  t_25 = ‐2.18; p = .04 
  Significant 
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Control group 

Traditional 2nd 
year course 

First year 
2008 

Second year 
2009 

 
 

 
 

  4.15 to 3.81 
  Decrease 
  t_26 = 1.2; p =.24 
 NS 

 

Figure2:  The shifts in grade distributions from first to second year mathematics for the 
integrated course versus two traditional courses. 

The results show that the shift from first year course (M1=4.54) to the integrated second year course 
(M2=4.94) was in the upward direction, so that as a group, students did significantly better in the 
second year course than they did in the first year course (t_25 = -2.18; p = .04). Furthermore, the 
mean for the experimental group in second year mathematics was higher than for any other year. For 
every other first to second year pair there was either no change or a significant downwards shift for 
the second year group. Across all of the comparison pairs of courses, there were several different 
lecturers who taught the first year course and the second year course, which add uncontrolled 
variance to the data. However, the 2005/6 cohort (shown in the first row of table 2) had the same 
lecturers for both the first and second year courses as did the experimental cohort. Thus the 2005/6 
pair could be said to be the best control group in the analysis. However, even in this pair, there was 
no difference in the marks between the years. On the other hand, with the same lecturers, the marks 
rose in the second year course when the experimental intervention was used in 2008. 

Mathematics and Chemical Engineering To investigate how participating in the integrated course 
may have benefited the chemical engineering students, we inspected the marks in the integrated 
course and in the related chemical engineering course (thermodynamics) for the experimental group 
versus the control group. The results are summarised in Figure 3 below, in terms of the distributions 
of marks for the mathematics and the thermodynamics courses, for the students in the experimental 
cohort versus the control cohort. 

The results show that the integrated mathematics course gave advantages to the thermodynamics 
students, both in the mathematics course itself while they were doing it (in 2008) and later in 
thermodynamics (in 2009). That is, the students who did the integrated mathematics course and then 
later took the related thermodynamics course had their mathematics marks skewed towards the upper 
grades. This is probably because one of the assignment problems in the integrated course was 
related to thermodynamics (calculating heat loss through a pipe using integration), and many of the 
chemical engineering students chose this assignment. Thus the integrated assignment seemed to be 
a positive experience for the experimental cohort. The results also showed that for these students (the 
experimental cohort), their later thermodynamics marks had more relative numbers of 5’s and 6’s than 
their colleagues in the same thermodynamics course who had completed second mathematics in a 
different semester (the control cohort). However, while the two-way ANOVA comparing the means for 
mathematics and thermodynamics gave a significant interaction (F_261 = 16; p = .001), the post-hoc 
tests showed that the thermodynamics mean grades for the control versus experimental group did not 
differ significantly (F_226 = .35 NS). The interaction was due to the advantage of the experimental 
group during their mathematics course rather than during their thermodynamics course. However, 
since ANOVA is a test of differences between means, it does not tell the full story, that there were 
more 6’s and 7’s in the experimental group in thermodynamics, suggesting some longer term benefits 
of the integrated course for at least some of the students in the experimental cohort. 
 

Group  2nd Year Maths grades for students 
who did Thermodynamics in Sem1 
2009 

 

Thermodynamics grades for the same 
students Sem1 2009 
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Experimental 
group 
 
Second year 
Maths: S1, 2008 
then 
Thermodynamics: 
S1, 2009 

 

 
Control group 
Second year 
Maths: S2, 2008/ 
Summer 2008/ 
S1 2009. 
then 
Thermodynamics: 
S1, 2009 

Figure 3: The distributions of marks for the integrated mathematics course and the later 
thermodynamics course for chemical engineering students in the experimental group versus 

the control group 

The above analysis is based on grades, which are only broad indicators of learning benefits. When 
comparing marks across semesters, there are many other factors that come into play: different 
lecturing styles, different emphases on adhering to the normal distribution when allocating final 
grades, and different cohorts of students. However, by comparing across many years of mathematics 
and by using students from the same class in thermodynamics, the analysis above has been aimed at 
reducing any blatant effects of such variables so as to distil some signal from the noise. Together 
these results gives some indication that the work on integrating the mathematics course with the 
chemical engineering component was successful, and resulted in some longer term benefits for 
students comprehension of mathematics as well as their ability to use mathematics in a related 
engineering course. The following analysis shows that the impressions of the students themselves 
support these findings. 

Student surveys  
Student responses were more positive in the long-term survey than in the short and medium term 
surveys.  One month after completing the project, a small but statistically significant majority of the 
class agreed that completing the problem allowed them greater depth than would normally be 
possible, and that the level of difficultly was appropriate. However there was no significant agreement 
that it was a worthwhile part of the course.  One year later, 52 % of students surveyed in the third 
level chemical engineering subject “heat and mass transfer” (i.e. thermodynamics) who recalled doing 
the pipe project in the maths course agreed or strongly agreed that doing that project improved their 
understanding of “heat and mass transfer” course content.    

Table 2: Discipline based analysis: Percentage of students from each discipline who 
agreed/strongly agreed (A/SA) or disagreed/strongly disagreed (D/SD) with the survey 

statements, 30 months after completing the problems.  

Discipline  Chem Civil IT & 
Elec. 

Mech. 
& Min. 

Eng. 
overall 

Math Phys. 
& 
Other 

Number of 
students  

16 33 26 18 93 12 10 
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Survey 
statement 4 

Doing the project helped me learn to apply maths to engineering/physics 
problems. 

A/SA 33  73  64  67  68 73   44 

D/SD 42   7   6   11  9 12  22 

Survey 
statement 5 

Doing the project helped me learn to develop a deeper understanding of 
mathematics.  

A/SA 56  67 62 61 62 50  67 

D/SD 13  12 8  17 12 33 11 

Survey 
statement 6 

Doing the project helped me remember the maths I learned in MATH2000 
longer than I would have if it was just a standard maths course. 

A/SA 19 36 64 33 40 25 44 

D/SD 31 30 32 44 34 58 44 

Survey 
statement 7 

Doing the project enhanced my mathematical modelling and problem solving 
skills.   

A/SA  56  53  62 56 57 42 78 

D/SD 19 9 19 22 16 25 11 

Survey 
statement 8 

The project in MATH2000 was not beneficial to me. 

A/SA 31 15 23 28 23 17 22 

D/SD 38 61 65 61 58 50 67 

Survey 
statement 10 

I would have learned more if the project problem had been linked more 
explicitly to courses that I went on to study. 

A/SA 63 61 58 61 60 25 33 

D/SD 19 21 12 0 14 50 0 

Survey 
statement 12 

Overall, was the project in MATH2000 2008 valuable for your learning? 

A/SA 63 67 69 94 72 33 67 

D/SD 19 15 8 6 12 33 22 

The long term results are the most positive (see Table 2). When surveyed thirty months after 
completing the integrated mathematics course (MATH2000), almost three-quarters of the engineering 
students agreed that the applied problems used in MATH2000 were valuable for their learning.  At 
least 60% of engineering students agreed or strongly agreed that the problems helped them to apply 
and to develop a deeper understanding of mathematics. While the majority of engineers responded 
positively to all statements about the value of the project, only 40% of engineering students agreed 
the projects ‘helped me to remember the maths taught in MATH2000 longer than I would have if it 
were just a standard maths course”.  IT & electrical engineering students were the only discipline 
surveyed where the majority of students agreed with this statement. 

Discipline-based analysis: While there was some variation between different disciplines of 
engineering in their response to various survey statements, there were no obvious differences 
between disciplines, except for mathematics students, who responded quite differently to the 
engineering students. That is, the most positive response in the survey was a 73% agreement by both 
mathematics and civil engineering students that the problems taught them to apply mathematics (see 
Table 2).  
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On the other hand, mathematics students had low numbers of positive responses to all other 
questions about the value of the project.   The difference between mathematics and engineering 
students may reflect different affinity for abstract mathematics, or different interests. Either way, the 
results indicate that engineers seem to need the maths to be grounded in the real world in order to 
grasp the concepts.  The key result is that using real world problem solving is not necessary for 
learning mathematics in an abstract form; rather it has the potential to improve mathematics skills and 
understanding for engineering students.    

The majority of engineering students agreed that they would have learned more had the project been 
more explicitly linked to other courses they were studying.  This was true across all engineering 
disciplines, but not an issue for mathematics or physics.   While the large scale highly funded 
coalitions (Al-Holou et al., 1999), had the resources and leadership to create linkages across the 
larger curriculum, this is not yet possible in smaller scale endeavours such as ours, where only two 
courses are involved.  For example, the only direct follow-up from mathematics inside an engineering 
course occurred in thermodynamics, where students were reminded of the pipe heat loss project 
when calculating heat loss from a pipe in their in their third year chemical engineering course.  
However, it is evidence that larger scale curriculum reforms would be valued by students were they to 
be implemented. 

Problem-based analysis: The large majority of students (84%) indicated that they remembered 
which project they had completed, and those students responded more positively to all survey 
statements than the students who did not remember which project they completed (see Table 3).   

The LRC circuit, followed by the heat loss project (pipe), received the strongest positive feedback 
from the students across all categories.   The winding number project was deemed to be very 
effective in developing deep understanding of mathematics, but did not receive positive feedback to 
other questions such as helping to apply mathematics. This is likely because it was the most abstract 
of the projects, and did not involve a modelling component, or dimensional variables.  It was included 
as an option for non-engineering students in the class who were more interested in abstract 
mathematics. 

When choosing their assignment topics in the integrated mathematics course, the students were not 
told which projects aligned with their individual disciplines; however, at least 30% of students in most 
engineering disciplines chose the project most aligned with their field of study. In a comment on the 
survey, one student suggested that each project should be labelled with its corresponding engineering 
discipline, so that students could choose the project most applicable to their future studies.  

Conclusions 
Poor mathematics knowledge and ability in students poses a major barrier to student learning in all 
engineering disciplines (PCAST, 2012).  In this report, we have shown that incorporating applied 
dimensional problems in mathematics courses has the potential to improve the ability of engineering 
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.  Table 3: Problem-based analysis: Percentage of students who agreed/strongly agreed (A/SA) 
or disagreed/strongly disagreed (D/SD) with the survey statements listed, for the problem 

which they completed, when surveyed 30 months later.   .   

Problem 

 

LRC  Pipe Sat. Dam  Wind. 
No.  

Overall 
(remem. 
project) 

Didn’t 
remem. 
project 

Number of 
students 

20 16 16 25 21 97 18

Survey 
statement 4 

Doing the project helped me learn to apply maths to engineering/physics 
problems. 

A/SA 80 88 64 79 48 72 17

D/SD 10 0 21 8 19 12 22

Survey 
statement 5 

Doing the project helped me learn to develop a deeper 
understanding of mathematics.  

 

A/SA 80 81 57 56 71 69 22

D/SD  10   6 7 20 10 11 29

Survey 
statement 6 

Doing the project helped me remember the maths I learned in MATH2000 
longer than I would have if it was just a standard maths course. 

A/SA  55 13 50 44 38 41 29

D/SD  25 25  36  36  52 35 47

Survey 
statement 7 

Doing the project enhanced my mathematical modelling and problem solving 
skills.   

  85   50  79  60  40 62 17

  10 13 14 16 10 13 39

Survey 
statement 10 

I would have learned more if the project problem had been linked more 
explicitly to courses that I went on to study. 

A/SA 60 63 29 60 52 54 56

D/SD 5 19 14 24 29 19 6

Survey 
statement 8 

The project in MATH2000 was not beneficial to me. 

A/SA 20 25 21 16 14 19 39

D/SD 75 44 50 68 62 61 39

Survey 
statement 12 

Overall, was the project in MATH2000 2008 valuable for your learning? 

A/SA 80 81 64 72 62 72 44

D/SD 5 6 14 16 19 13 29

students to apply mathematics, and so address a well-discussed and well-documented need in 
engineering education.   One of the key benefits of this approach is that it can be led by informal 
collaborations between teaching staff from engineering and mathematics, and so does not depend on 
institutional leadership or curriculum reform.   

Applied, dimensionalised problems taught in tandem with mathematical theory can enhance both 
mathematical and problem-solving skills of engineering students.  However, generating such 
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problems in mathematics is non-trivial: it requires time, knowledge of both the engineering problem 
and the mathematics, and the ability to map the higher order relationships across the two problem 
domains.   In spite of the challenges, it is possible to provide integration for students through small-
scale partnerships across disciplines. Once the mappings between problem domains have been 
realised, and a problem set has been created, these can be reused in tutorials, or modified for use as 
assessment items again at a later date. Ideally, these resources can be pooled across different 
universities for maximum benefit.  The existing coalition’s websites which give examples of integration 
efforts, would be ideal places for these problems to be shared (e.g. Foundation, Synthesis, etc.; see  
Al-Holou et al., 1999). 

Our analysis of student marks suggest that there are benefits in using applied problems in a 
mathematics course, both for how students do in the mathematics course as well as for how they fare 
in related engineering courses. 

Engineering students in this study appeared to value application of mathematics to real world 
problems.  A key (although perhaps unsurprising) finding is that the mathematics students in this 
study did not see the value of the application of mathematics to real world problems as much as the 
engineering students.   This is consistent with the findings of  McKenna et al. (2001) who investigated 
issues that students had when applying integration to real world problems, finding that students 
perceive mathematics to be abstract and irrelevant to other subjects. This could be due to the way it 
has always been taught. Our attempts at integration and other attempts like Otung (2002) show that it 
is possible to teach mathematics in a different way.  

Our results also suggest that students may change their perspective on the value of different learning 
activities over the course of their degree, and that both short and long-term surveys are useful in 
assessing teaching practices.   

The tendency for students to grind through the working out of a mathematical solution and thus not 
make the essential conceptual links between the mathematics to the context is a real issue with all 
engineering problems that involve mathematics. The issue that we were trying to address here was 
that of helping the students to be able to later ‘see’ the mathematics needed to solve the problem 
based on seeing it once before when learning the mathematics. The benefits associated with this 
method could be increased through explicitly linking each specific assignment project to the 
engineering discipline and courses from which it originated.   This could be done with some very 
simple actions, requiring very little time from teaching staff.  For example, the projects should be 
clearly labelled according with the appropriate engineering discipline.  Engineering teaching staff 
could make a short guest appearance in the mathematics course to explain briefly the origin and 
significance of their problem, and the engineering course in which students will later encounter the 
problem.   This extension to the method could help to prevent students from tackling the assignments 
by merely working through the a mathematical equations, and thus not really creating any long lasting 
conceptual understanding of how the mathematics applies to the problem at hand. We are embarking 
on further projects to try to address the issue of how to help students to ‘see’ the mathematics in an 
engineering problem. 

Creating links between previous and current learning is known to benefit student learning (Coppola et 
al., 1997; Polya, 1971). Thus, addressing the same problem firstly from a mathematical perspective 
and then in an engineering context should help to address the key issue of engineering students 
ability to apply mathematics, and so increase their capacity to learn in many engineering courses.  
Incorporating applications in mathematics courses has a number of benefits for students (Al-Holou et 
al., 1999) and we have presented a feasible way for individual lecturers to make this happen.  
Developing authentic, dimensionalised problems for engineering students requires time and genuine 
collaboration between mathematicians and engineers (on a personal, rather than curriculum review 
level).  The process of developing these problems also develops links and collaborations between 
engineering and mathematics teaching staff, which can benefit education in multiple ways.    

Such an endeavour takes courage and patience and perseverance for all who embark on this journey, 
and it is not for the faint-hearted. The key barriers to widespread uptake of this process are lack of 
time and lack of collaborative networks.  University management can promote these through 
encouraging and rewarding collaboration and teaching innovations; thus actions can be taken at 
department, faculty or organizational scale to address this critical issue in engineering education. 
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Supplementary material Appendix A: four sample 
problems 
We include four problems used in this study, collaboratively designed by engineering and 
mathematics staff.  

Problem 1: Heat loss from a pipe 
In almost all process engineering plants, fluids are transported though piping.  If the pipe and 
its contents are hotter than the surrounding environment, heat will be conducted through the 
pipe wall to the surrounding air. This loss of heat is a waste of energy, which will increase 
the carbon footprint of the process plant.  Furthermore, if enough heat is lost from the pipe, 
the pipe contents may thicken or solidify, resulting in damage to pipes or pumping 
equipment, a disaster for any engineering process. 

Objects of unequal temperatures in a thermal system tend toward thermal equilibrium. The 
hotter object transfers some of its heat to the colder object until the objects are the same 
temperature.  Just as water flows down a pressure gradient, heat is conducted down a 
temperature gradient. Hence for heat conducted through a pipe, the rate of temperature 
change over time is a function of the temperature gradient: 

Tk
dt

dT
C p

2           Eqn 1  

where: k is thermal conductivity (Wm-1K-1), which depends on the pipe wall 

T is temperature (oC or K); t is time (s); Cp is specific heat (J kg-1K-1, not used in this project) 
and ρ is the density of the pipe wall (kg/m3). 

In cylindrical coordinates, the steady state form of Eqn 1 simplifies to: 

dr

dT

rdr

Td 1
0

2

2

          Eqn 2 

where r is the radius of the pipe (m).    

Fourier’s law relates energy transfer to temperature gradient and thermal conductivity: 

dr

dT
k

A

q
                                                          Eqn 3 

where q is the rate of heat loss from the pipe (W=Js-1),  and A= area through which the heat 
is conducted, i.e. the area of the pipe wall (m2).  
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Fig 1: Cross-sectional view of a pipe.  ro and ri are the other and inner radii and To and Ti 
are the temperatures at the outer wall and inner boundaries of the pipe (prescribed). 
(a) Solve Eqn 2 for the temperature throughout the wall of the pipe using the boundary 

conditions provided on the diagram. 
(b) Using your solution to Eqns 2- 3, derive an equation for q, the rate of heat loss from 

the pipe under steady state conditions, as a function of pipe length h, the temperature 
of the inside of the pipe wall Ti, and the temperature of the outside wall of the pipe To.  
(The inner radius of the pipe is ri and the outer radius is ro, as shown in Fig. 1).  
Consider ONLY conduction of heat through the pipe wall (ignore heat loss along the 
pipe length).  Does q depend on r in this case? Explain why or why not.  

(c) A carbon steel pipe (inner diameter 50 cm, wall thickness of 20 mm) is used to 
transport high pressure steam around a dairy processing plant.  If temperature of the 
inside wall of the pipe is Ti=150 oC and the outside wall temperature is To=30 oC, what 
is the rate of heat loss per metre of pipe?   

(d) If the factory contains 2 km of this steam piping and operates continuously, what will 
be the total energy lost from steam pipes over a year? 

(e) Assuming 0.1 kg of CO2 are released per MJ of energy consumed, what total annual 
greenhouse gas emissions correspond to the wasted energy? 

(f) Determine the temperature in the pipe wall, midway between the inner and outer walls. 
(g) How will the rate of heat loss per unit length of pipe change if the pipe diameter is 

doubled? 
(h) How will the rate of heat loss per unit length of pipe change if the pipe thickness is 

halved? Compare this with the effect of doubling the diameter. 
(i) Find an expression for the mass flow in the pipe F (kg/s) 
(j) Find an expression for the mass flow in the pipe F (kg/s), in terms of the steam density 

ρsteam (kg m-3) and the steam velocity v (ms-1).  
(k) Heat loss per unit length may not be the most appropriate basis to consider the heat 

loss from the pipe if the diameter is changed.  Assuming the same velocity and density 
of steam in both cases, how will doubling the pipe diameter effect Q, the heat loss per 
unit mass of steam per unit length of pipe?  You will need your answer to (i). 

(l) For the carbon steel pipes and temperatures given above, determine whether doubling 
the pipe wall thickness or doubling the internal diameter of the pipe would be more 
successful at reducing the energy loss in the plant. 

(m) The thermal conductivity and thickness of pipe wall vary for different construction 
materials (Table 1).  For a pipe with inner diameter 50 cm, which of these 

ri 

ro r

Ti 

To 
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materials in Table 1 will maximise heat loss from the pipe?  Which will minimise 
heat loss from the pipe?  

Table 1 - Common pipe heat transfer characteristics. 
 

 

 

 

 

  

Material Thermal conductivity 
k (Wm-1K-1) 

Thickness of pipe 
wall r (mm) 

Aluminium 250 17 
Brass 109 10 

Carbon Steel 54 20 
Stainless Steel 16 25 

PVC 0.19 30 



 
Proceedings of the 2013 AAEE Conference, Gold Coast, Queensland, Australia, Copyright © McCredden, O’Brien and Roberts, 
2013 

 

 Problem 2: Satellite problem 

 

A spinning satellite system consists of a communications module and a separate fuel cell 
module tethered with an adjustable length L between two individual centres of masses, A 
and B. The system spins about the Z axis centred at the system centre of mass G and has 
the following parameters: 
 Fuel cell is a cube with side length s, mass MA and uniform mass distribution. 
 Communications module is a cuboid of width b, height h  and width w , mass MB  and 

uniform mass distribution. 

(a) Determine the position of the system centre of mass G (XG, YG, ZG) as a 
displacement from the fuel cell centre of mass A. Choose A as the origin for your 
calculations.  Explain if and how the geometry of the satellite components affects 
the system centre of mass position. 

(b) Using the definition, determine the mass moment of inertia components IBX of the 
communications module about its centre of mass B. Use symmetry arguments to 
write down IBY, IBZ.  Write the answers in terms of the mass MB . 

(c) Determine the mass moment of inertia components , ,AX AY AZI I I  of the fuel cell 

about it’s centre of mass A (The result can be simply obtained from (b)). Write the 
answers in terms of the mass MA 

(d) Determine the mass moment of inertia components of the system , ,GX GY GZI I I of 

the satellite system about it’s centre of mass G by calculating the fuel cell and 
communication module components directly with respect to G. The calculations 
are simpler if you retain YG if you answer * 

(e) Repeat (d) by using your answers in (b) and (c) and using the shifting axis 
theorem (also called the parallel axis theorem). 

* In (d) you may wish to make use of the identity (p+q)3-(p-q) 3= 6 p2 q + 2 q3. If you use it 
you should also write down a quick proof. 

For the following questions you are required to determine numerical answers. Take the fuel 
cell to have side length s=0.4m, mass 45kg. Take the communications module to have 
dimensions b=5m, h=4m, w=3m, mass 200kg. Assume the initial length L=10m and spin rate 
p=1Hz. 
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(f) Based on your inertia calculations determine the angular momentum components of the 
satellite system about its centre of mass ( , , ,i Gi iH I i X Y Z   ). 

(g) The tether is now slowly extended. The external forces on the satellite are negligible so 
the angular momentum is conserved. Determine what length L the tether needs to be 
extended to in order to reduce the spin rate by 50% from its initial value. 

(h) Predict and explain if and how your answers in f) and g) would change if the 
communications module was in the shape of an ellipsoid with the same mass and mass 
moment of inertia components. 
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Problem 3: Dam water depth 

 
Consider a dam which is modelled using the two tetrahedrons shown above. The dam wall 
has height H at its  centre  and width 2W .  The dam extends a distance L up river.  The dam 
is drawn upside down to make calculations easier. 
(a) Find the equation of the plane for the dam bottom  (x > 0).  
(b) In order to monitor the water storage in the dam,  you are asked to determine  at  what 

height you should put  markers  at  the centre of the dam wall (i.e. the z-axis to indicate 
when the dam is fraction f full (so 0 ≤ f ≤ 1).  Provide a formula for the height as a 
function of the fraction f, i.e. find f (h) and hence h(f). Also provide the full capacity of 
the dam. 

(c) If the catchment area is A, determine a formula for the “height” of rain which must fall 
in the catchment in order to fill the dam.  Assume that the dam is initially empty, there 
are no outflows, and that all the falling water collects in the dam. 

(d) A field rain gauge has the shape of a perfect sphere of radius  R.  It has a small 
opening of area α at the top.  Your goal is to determine at what height (relative to the 
vertical dimension) you need to place a mark to indicate that  r mm of rain have fallen. 
First express the fraction that the gauge is filled as a function of height. 

In the following questions about the dam and rain gauge you must provide numerical 
answers for the parameters given. 

Dam: H=100m, W=150m L=100km A=1500 km2.  The numbers are based roughly on 
Brisbane’s Somerset Dam (Queensland, Australia).  

Gauge: R = 40mm, α = 81mm2. 
(e) For the dam provide the actual heights on dam wall to indicate when the dam fraction 

has reached f = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.0.8, 0.9, 1. 
(f) For the specified parameters give the actual required rainfall to fill the otherwise empty 

dam. 
(g) Indicate where you would need to place a mark to indicate that the gauge is 40% full. 

The actual point must be read off a graph (unless you wish to use the formula for 
solving cubic equations).  How much rainfall (in mm) has fallen when the gauge is 40% 
full?  
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Problem 4: LRC circuit 

In an LRC circuit the voltage drop across an inductor, capacitor  and resistor is given by 

ூܸ ൌ 	ܮ	
ܫ݀
ݐ݀
,			 ௖ܸ ൌ

1
ܥ
න ݏሻ݀ݏሺܫ
௧

଴
		and		 ோܸ ൌ  .ܴ	ܫ

If they are arranged in series, Kirchoff ’s law states  that	 ூܸ ൅ ூܸ ൅ ூܸ ൌ ܸ or 

	ܮ	
ܫ݀
ݐ݀
൅	
1
ܥ
න ݏሻ݀ݏሺܫ
௧

଴
൅ ܴܫ	 ൌ ܸሺݐሻ																							ሺ1ሻ 

where V (t) is the applied voltage.  Below we assume the latter to be of the form V  = E0  
sin(ωt). Taking the derivative of (1) gives 

ሷܫ	ܮ ൅ ሶܫ	ܴ	 ൅ 	
1
ܥ
ܫ	 ൌ 	

ܸ݀
ݐ݀

ൌ ଴ܧ	 ߱	cos߱ݐ .															ሺ2ሻ 

(a) For L=1,R=2 C=1/3, w=1 and E0=20, use the method of undetermined coefficients to 
find the general solution  for I .  Identify the transient and steady state solutions, and 
explain what will happen after a long time has elapsed. 

(b) For general L, R, C and E0   find only the steady state solution to (2). Show that 
your solution can be written as 

ܫ ൌ
െܧ଴ܵ
ܴଶ ൅ ܵଶ

	cos߱ݐ ൅	
଴ܴܧ

ܴଶ ൅ ܵଶ
	sin߱ݐ, 

where the reactance is ܵ ൌ ܮ߱	 െ	
ଵ

ఠ஼
. 

(c) Write your solution as I0 sin(ωt − θ). Find I0  and θ. 
(d) Consider the complex ODE: 

ሷܬ	ܮ ൅ ሶܬ	ܴ	 ൅ 	
1
ܥ
ܬ	 ൌ ଴ܧ	 ߱	expሺ݅߱ݐሻ 				݅ ൌ √െ1 

Use the method of undetermined coefficients with the (complex) trial particular solution 
௉ܬ ൌ  .ሻ to find K. Write your answer in  terms of R and Sݐexpሺ݅߱	ܭ

(e) Find the real part of your solution from part  (d).  It should agree with your solution 
from part (b).  Why? 

(f) The complex impedence Z is defined by Z = R + iS. Show that 

ܭ ൌ
଴ܧ
ܼ݅
. 

The equation is similar to I = V /R for DC circuits. 

(g) Use the complex method of part (d) to derive the steady state solution you obtained in 
part (a).  (Re-derive the solution rather than using your formula from part (d). 

(h) In the steady state the energy supplied to the circuit must be equal to the energy 
dissipated by the resistor.  This is because no energy is consumed by the inductor or 
capacitor (although energy may be temporarily stored in these components).  In one 
period (T = 2π) the energy loss and input are given by 

න 						ݐଶܴ݀ܫ
ଶగ

଴
න 						ݐ݀ܫܸ
ଶగ

଴
 

Show that these two quantities are indeed equal by direct computation. Here V  = 20 
sin t is the supplied voltage and I is the current in the circuit obtained in  (a)  and (g). 

BONUS QUESTION: Can you prove that the above two integrals must be equal? The 
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proof involves multiplying equation (1) by I and integrating.   
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Appendix B: The shift in grade distributions from first to second year 
mathematics for the last 8 years (2005/6 to 2012/2013), with corresponding 
within subjects t-tests. 

Cohort 

Lecturers 

 

First year math grades 

 

Second year math grades 

Mean 1 to Mean 2 
shift 

Within subjects t-
tests 

 

2005/6 
Z/R,I 

 

 
4.64 to 4.64 
No change 
t_21 = 0.0 
p = 1.0 
NS 

2006/7 
H,I/R,I 

 
4.54 to 4.38 
Decrease 
t_12 = .35 
p = .73 
NS 
 

2007/8 
Z/RI 

 
4.54 to 4.92 
Increase 
t_25 = -2.18 
p = .04 
Significant 
 

2008/9 
Z/Z,I 

 
4.15 to 3.81 
Decrease 
t_26 = 1.2 
p =.24 
NS 
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2009/10 
Da,Do/I 

 

 
 
 

 
4.05 to 3.67 
Decrease 
t_20 = 1.16 
p = .26 
NS 
 

2010/11 
Do/I 

 

 
4.96 to 3.76 
Decrease 
t_24 = 4.00 
p = .001 
Significant 
 

2011/12 
Do/R 

 
 

 
4.67 to 2.56 
Decrease 
t_26 = 7.43 
p = .000 
Significant 
 

2012/13 
Do/I 

 

 
4.84 to 3.13 
Decrease 
t_30 = 4.96 
p = .000 
Significant 
 

Notes 
 The mean was higher in 2008 for second year mathematics than any other year 
 2008 is the only year second year mathematics went up from first year 
 The same lecturers taught first year and year second year mathematics in the 

2005/2006 years as taught the 2007/8 years (i.e. Z in first year and R,I in second year) 
which is the best control available in the analysis 

 The same lecturer taught second year mathematics in 2008 (the experimental group) 
and 2102. The mean for the 2012 class was 2.56, as opposed to 4.92 for the 
experimental group. 


