
Full Paper

Introduction

This paper reports on findings from a case study of an engineering course in a New Zealand
university focused on the learning and application of a 3-dimensional computer-aided design
(3D CAD) software, SolidWorks, as an exploration of student understandings of software
literacy. It is part of a larger two-year funded research project investigating the notion of
'software literacy' - how it is understood, developed and applied in tertiary teaching-learning
contexts and how this understanding serves new learning. Software literacy incorporates
understanding, applying, problem solving and critiquing software in pursuit of particular
learning and professional goals (Khoo, Hight, Torrens, & Cowie, 2013; Hight, Khoo, Cowie, &
Torrens, 2014), and extends current information and digital literacy frameworks that do not go
far enough in examining how lecturers and students engage with specific software applications
and its implications for student learning (Livingstone et al., 2013). There is emerging evidence
that although the current student generation may be technologically competent, many still lack
the basic academic technological literacy skills needed to successfully apply software
embedded and enabled technologies effectively to enhance their formal learning (Kvavik,
2005). In relation to engineering education, there is evidence for the ways different digital
technologies can significantly shape how and what millennial engineers can learn (Johri, Teo,
Lo, Dufour, & Schram, 2014). This has, however, not been investigated in the New Zealand
context.

Software Literacy and Engineering Education

Software studies, a research paradigm championed by Manovich and colleagues (Manovich,
2013), insists that ‘software’, operating at the levels of individual applications, platforms and
infrastructures, is the dominant cultural technology of our time, an actor integral to many of the
social, political and economic practices within contemporary society. Software users ideally
need to develop a critical awareness of how software operates to contextualise and frame their
agency through the logics embedded within programming code. Within this paradigm, there is
a vital need for detailed empirical research into how software is understood, interpreted, and
actually ‘performed’ by individuals and groups in specific contexts.

Our notion of software literacy is a practice-based schema which anticipates that users can
scaffold from acquiring basic skills in using an application, to appreciating its affordances, and
then on to develop an understanding of how software operates to frame knowledge and
knowledge generation, and communication and creativity within disciplinary practices. We view
software literacy as encompassing three specific levels of capabilities:
1st. a basic functional skill level, enabling the use of a particular application in order to
complete a specific set of tasks;
2nd. an ability to independently problem solve issues faced when using an application for
familiar tasks (which includes the ability to draw upon various resources to help solve
difficulties); and, ultimately,
3rd. the ability to critique the application, including being able to apply a similar analysis to a
range of software designed for similar purposes - enabling the informed selection of
applications and more ‘empowered’ new software learning.

In these terms, the most ‘critically literate’ users can identify the affordances of particular
software tools and are able to apply and extend their knowledge and use of these and other
software tools to a range of new and different purposes and contexts. Users may acquire
software literacies through a combination of means; through trial and error, learning informally,
or training in a more formal or structured way. We assume most people develop proficiency

with ubiquitous software packages informally through everyday engagement. Tertiary students
are assumed to be able to translate these knowledge and skills into formal settings to complete
learning tasks, however this is not always the case (Bennett, Maton, & Kervin, 2008).

We know very little about how students develop the skills and expertise needed to attend to
the features of and use software (as application, platform and architecture) to complete
everyday tasks. There is evidence that the ubiquity of software and ICT tools has led students
to adopt a range of informal approaches to meet their learning needs (Peeters et al., 2014).
Research also indicates that students’ formal software and technology learning backgrounds
are diverse (Khoo, Johnson, Torrens, & Fulton, 2011), and are highly specific to their formal
and informal educational, social and cultural contexts for learning and use (Jones, Ramanau,
Cross, & Healing, 2010; Valtonen, Dillon, Hacklin, & Väisänen, 2010). There is a general
recognition that CAD are complicated applications to learn and that many students grapple
with not only mastering the technical but also the cognitive/visual-spatial skills involved in the
learning process (Akasah & Alias, 2010). The challenge is for educators to adopt flexible
pedagogical strategies that address this diversity. Given the various forms of investment
required in the adoption of ICTs in the tertiary sector, it is imperative to understand how to
close the participatory gap for students and ensure that technology is equitably and effectively
used (Jenkins, Clinton, Purushotma, Robison, & Weigel, 2006). No studies that we know of
raise the role of student understanding of how software and its affordances influences
knowledge generation and critique, or the influence of formal and informal learning in relation
to software. This research is therefore important to investigate how students develop
knowledge and skills to use software and the extent they are able to employ these to
successfully learn and act in formal tertiary learning contexts.

Research Context

In this paper, we investigate the extent students are able to develop SolidWorks (CAD)
software literacy (in formal learning context) and to apply and extend this understanding while
on workplace experience.

The case studied engineering course is a second year course introducing students to the broad
principles of engineering design process and methodology. The course offers advanced
exploration into SolidWorks learning by grounding its use in real-life engineering design
applications and contexts. Students attend lectures and engage in the design principles and
process through examining and discussing case studies of designs. They also attend 5 two-
hour weekly supervised computer labs where they are provided with tasks to help them acquire
further proficiency with SolidWorks and work on individual assignments. Students also
participate in a group design project as a demonstration of their SolidWorks supported design
understanding and application. CAD software is considered an integral component of modern
engineering and is widely used in industry. The course lecturer was keen to explore and
conceptualise best practices for the teaching of software within the disciplinary framework to
more effectively enhance student learning and their application of SolidWorks. The software
literacy framework was adopted as it had the potential to address the lecturer’s pedagogical
goals for his course and better support his students’ learning.

All four year engineering degrees in New Zealand require the completion of 800 hours of
appropriate workplace experience. Not all work placements will include the use of CAD;
however for those that do, it is useful to consider how students transition or adapt their learning
(and learning strategies) from the tertiary environment to the particular demands of their
workplace, including learning alternative CAD applications. Knowledge of CAD can still be
useful for students not actively using the software to allow them to interpret CAD generated
drawings and usefully contribute to design discussions.

Research Design

We tracked the extent the second year Engineering students were able to develop a
foundational competence in SolidWorks through a combination of formal and informal learning.
A smaller group of students were also recruited to study their ability to transfer and apply or
adapt their SolidWorks software literacy in the more immersive and/or specialised forms of
practice required within workplace settings. Having an understanding of how students
approach this process, including the strategies they are encouraged to draw from, will provide
valuable insights into ways to better support students learning with and through software as
part of their tertiary Engineering experience.

A qualitative interpretive methodology was adopted to frame the collection and analysis of data
as it allowed for careful attention to the participants’ perspectives and privileges their subjective
realities within their specific contexts (Maykut & Morehouse, 1994). Multiple forms of data
collection were collected through an online student survey (67 students out of approximately
140 students), lab observations of students’ SolidWorks learning, individual student interviews
when students were on work placement (4 students), and a follow up focus group interview
after students have returned from their work placement (7 students). Analysis of the data was
underpinned by sociocultural theory which directed attention to the interaction between people,
the tools they use to achieve particular purposes and the settings in which the interactions
occur (Cole & Engestrom, 1993). Emergent themes were identified through a process of
inductive reasoning (Braun & Clarke, 2006).

Emerging Findings

Four key themes emerged from the analysis of the data: 1) a general student recognition that
CAD knowledge and understanding is an integral part of their disciplinary knowledge, 2)
learning more complex CAD applications beyond those taught in formal coursework was
necessary to address work place requirements, 3) full proficiency of SolidWorks is challenging
as it is a complicated and comprehensive software, and finally, 4) informal learning initiatives,
time and effort were required to use and appropriately apply SolidWorks in industries.

1) CAD knowledge and understanding is an integral part of disciplinary knowledge

Students agreed that an understanding of CAD was necessary to comprehend and contribute
to the engineering design process relevant to an organisation. Student evaluation of their
ability to engage with disciplinary-specific software prior to and after completing their course
indicates some gains in software literacy (see Table 1). Based on the categories of ‘I would
need help’, ‘I have the basic skills’ (level 1 of our model), ‘I can troubleshoot problems’ (level
2) and ‘I can apply this software’ (level 3), students at the start of their second year coursework
felt they would need help to use SolidWorks (52%), or that they would only have the basic
skills to use the software (39%). This decreased to 2% at the end of the course of students
needing help and an increase to 45% of students who felt they now have the basic skills to use
SolidWorks after learning about it in the course. Another 37% of students thought they were
able to troubleshoot problems faced in using the software, an increase from 6% at the
beginning of the course. Gains in these two levels (basic skills and troubleshooting ability)
correspond to the first two levels of our software literacy schema. By the end of the course,
only 16% however thought they could apply their skills to a wide range of tasks, an indication
of a lack in achieving the third level of our software schema.

Table 1: Changes in student assessment of their ability to use SolidWorks

 How good were you in
using SolidWorks

After learning about
and using SolidWorks
in this paper, how

before enrolling in this
paper?

good would you rate
yourself at using it?

I would need some help to use this software 52% 2%

I have the basic skills to use this software 39 45

I can troubleshoot problems when using this software 6 37

I can apply this software to a wide range of tasks 3 16

These results suggest that the formal coursework focused on software learning helped to
develop students’ software literacy so that nearly all students reported a shift to at least tier 1
(basic ability). Very few students report achieving tier 3 of our software literacy model.
However the very few who do reported on the ways SolidWorks enabled them to visualise
abstract disciplinary ideas, create and manipulate 3-dimensional objects, and communicate
their design ideas to others as indicated in the following student quote:

I guess you could say that you can make things in SolidWorks that you can’t make in real life. So,
[…] in SolidWorks you could [drill] a hole that was in a spiral and curve round but then you can’t
get a drill and drill that. Yeah, just … that was a problem I came into when I was learning because
I was just making models as they looked rather than how they could be made.

Having the basic skills to use and troubleshoot problems within SolidWorks is an important
part of preparation for the work place experience. Two different students in the focus group
explained:

It is sort of expected to have some knowledge of CAD when you go into work placement. If you
turn up with no background, it’s a big disadvantage.

Cause you’d always come across technical drawings so having an idea of how they’re made can
be a bit of a benefit especially if they’re made wrong.

Students further reported that different aspects of SolidWorks became more relevant than
others for their industry design purposes which extended their understanding of the software.
A student commented on an example of using the ‘virtual prototyping’ feature in SolidWorks in
his work placement to generate simulations of different design ideas and to allow his work
team to discuss and decide on an idea:

Yeah, so we'd use virtual prototyping if we needed to do a simulation to see how it [a design
prototype] might behave under certain conditions. And then it was really good for when we had
multiple ideas on the table, they were all really good ideas but we needed the final sign-off by
someone else so that's when it [virtual prototypes] came in.

2) More complex CAD applications beyond those taught in coursework was necessary

Some work placements expected students to engage with similar but different CAD
applications to SolidWorks requiring them to transfer their existing skills to these contexts. An
aspect that appeared to facilitate students’ learning of SolidWorks was students’ prior
engagement with artefacts or software that had a similar conceptual basis (and similar set of
affordances) which provided a pathway for them to engage with new and more advanced
software learning (examples here included ProEngineer, AutoCAD, Star CCM+, Autodesk
Inventor and TurboCAD). Transfer of skills and enhanced awareness of functionalities were
reported by 15% of students, a finding supported by subsequent focus group discussions.

For most other students, their workplace required more specialised learning, faster and/or
more complex levels of SolidWorks application to be more effective in addressing site-specific
manufacturing/production processes. This was exemplified when a student learnt a new
application for SolidWorks as part of his workplace experience:

I needed to do something and the boss pointed out another feature [in SolidWorks] that I had no
idea, which was ‘unpacking’ or something. That opened my eyes to a whole different part, like
there’s an application that I had no idea existed and that I could do so much more with it.

Another student gave the example of having to learn to also use AutoCAD and another
software such as Inventor as part of his workplace requirement. He found being exposed to
the contrasting features of each software useful to his software literacy development:

AutoCAD’s got more benefits because you can export your drawing to a Paint file and you can
make it to a PDF and send it in an email to your boss. You can do all that from SolidWorks as well,
it’s just at university you’re not taught any of that stuff in SolidWorks, there’s limited knowledge of
what you get taught and you only scratch the surface. My boss was saying using Inventor and
AutoCAD, the benefits of AutoCAD is if you have a more complex model, if you want to make a last
minute change to it, its easier on AutoCAD.

3) Full proficiency in SolidWorks is challenging

Students in general perceived SolidWorks to be a complicated, comprehensive and flexible
piece of software. It was therefore not feasible to try and fully understand the breadth and
depth of its hierarchies of affordances during their tertiary programme.

Cause there's so many tiny little individual parts about understanding SolidWorks that you get past
a certain point and suddenly you don't know how to mirror a three-dimensional part (for example).

The projects that you have to at university does prepare you well but they just don’t allow you to go
right into what the software can do.

As SolidWorks is a complicated application, students suggested a more in-depth grounding in
conceptual frameworks in the learning of the software could facilitate their understanding and
to enable them to more effectively troubleshoot their application of specific affordances they
encountered in their more informal learning. For example teaching the principles of
Engineering design as well as CAD conventions can enhance student understanding of the
potential of the SolidWorks software. Working with real-world cases and focusing on particular
applications of the software likely to be relevant were suggested by some focus group students,
for example:

Instead of just getting a general skim of everything [in the course], have the paper [such] where
we went really in-depth into the basics, for example, these are XYZ… this is how you use them,
how geometry is important and then here’s some features [of SolidWorks] that would be relevant
to do this.

4) Informal learning strategies needed to complement formal coursework learning

Finally, there is a recognition that the conceptual and technical complexity of SolidWorks
demands a more self-directed and committed investment in time to learn the software, which
required developing informal learning strategies to complement the formal training provided
within their tertiary programme. Students regularly drew from informal learning strategies and
networks to support their learning of SolidWorks. When asked to rank strategies most useful
to their learning, the top three strategies ranked as most useful (Rank 1) were ‘asking the
course lecturer’ (40%), followed by ‘going online to refer to the Internet for instructions’ (12%)
and ‘referring to the course or lab notes’ (10%). The top three strategies student ranked as the
second most useful in their SolidWorks learning (Rank 2) were ‘asking a friend’ (24%),
‘referring to the course or lab notes’ (21%) and ‘reading a manual of the software’ (16%). Finally
the top three strategies that were ranked as third most useful in students SolidWorks learning
(Rank 3) were watching someone use the software (16%), discovering through trial and error
(16%), and finally going online to watch video tutorials (15%). Overall, apart from asking the
course lecturer, the reported strategies tend to draw from more informal resources that
occurred outside of course or lab hours.

These were confirmed by open-ended survey responses and focus group commentary. A
representative focus group comment was:

Most of my learning on SolidWorks has been done by working on it at home or playing around at
home, e.g., how to do that, learning from peers and also YouTube videos. Like, if there's no one
around and you can’t do it, type it into Google, type it into YouTube and hopefully you’ll get
something and if you don’t then get some help. (Student)

This practice of mainly drawing from informal learning strategies continued when students
were in their work placement. For example, learning from peers was common informal
workplace learning practice which added to students’ software literacy development:

I know that in my work placement, I had a couple of people who knew how to do everything and I
would ask them. There was some stuff that they didn’t know and there were some things that I’d
learnt at uni that they didn’t know existed in SolidWorks...

Another student affirmed the value of this strategy when thrown into a challenging real world
context to use the software appropriately:

On my first day I think I was sat down and he was like, 'Right, make this' and I made it and he was
like that's totally wrong and then spent like three days teaching me how to use it, just how he liked
it taught so.

One student reflected on the strategies he had developed as part of highlighting the value of
learning to troubleshoot and of persistence be it in more advanced coursework or while on
work placement:

From [first and second year] we pick up all the basic stuff and learn how to do it, but during that
process we learn how to use the troubleshooting method and that's I think the most valuable thing
that helped me later on ... I'm confident with even something I don't know, I know how to find it,
how to learn it from online resources then I can still make that happen [on SolidWorks]. I think that's
the most valuable thing, that even later when I go to my fourth year and do some more complicated
thing, I know where to go.

Discussion and Conclusion

This study adopted a software literacy framework to investigate the extent second year
engineering students developed the ability to use, troubleshoot and critique SolidWorks (CAD)
software literacy (in formal learning context) and to apply and extend this understanding while
on workplace experience. It confirmed findings from earlier studies that SolidWorks/ CAD
knowledge and use, albeit it being complicated to learn, is an important and necessary aspect
of engineering disciplinary knowledge (Akasah, & Alias, 2010; Khoo, Johnson, Torrens, &
Fulton, 2011). Students reported developing a range of informal learning strategies to
supplement their formal coursework learning and even while on work placement to extend and
develop new software literacy skills. Some students are better at transferring their knowledge
and use of SolidWorks from their coursework to their workplace depending on their experience
with software involving similar conceptual ideas.

These findings have three implications for engineering education in relation to CAD software
learning. Firstly, pedagogical strategies that provide explicit reference to the guiding principles
and conventions of engineering design principles and how these might be implemented
through CAD, even before students explore specific features of the software, can help students
better understand the fundamental functions of the software as well as its potential.

Secondly, the teaching and learning of CAD software could take advantage of students’
informal repertoire of learning strategies and networks including their accessing of (web-
based) resources and discussions with ‘expert’ peers. Lecturers using a range of teaching
approaches (formal and informal) and being flexible to address diverse learning needs is
important for supporting and facilitating students’ software learning.

Finally, engineering educators need to examine how discipline-specific software teaching-and-
learning is positioned in relation to local and general goals for curriculum and the kinds of
software literacies expected of students. Currently at the University of Waikato and likely in
many other institutions, the focus when teaching CAD is for students to develop a proficiency
with the software. Often there is little emphasis on evaluating different software packages.
Students would likely only begin to develop this third level of software literacy if they were
exposed to multiple software packages (something difficult to achieve in a tertiary environment
due to time and resource constraints). We recognise there will be competing priorities for the
discipline as a whole but argue that such examination can shape curricular decisions, learning
opportunities and resourcing offered for supporting students’ engagement and learning with
and through CAD software and its application within the wider context of the field.

References

Akasah, Z., & Alias, M. (2010). Bridging the spatial visualisation skills gap through engineering
drawing using the whole-to-parts approach. Australasian Journal of Engineering Education, 16(1),
81-86.

Bennett, S., Maton, K., & Kervin, L. (2008). The ‘digital natives’ debate: A critical review of the
evidence. British Journal of Educational Technology, 39(5), 775–786.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2), 77-101

Cole, M. & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon
(Ed.), Distributed cognitions, psychological and educational considerations (pp.1-46). Cambridge:
Cambridge University Press.

Hight, C., Khoo, E., Cowie, B., & Torrens, R. (2014). Software literacies in the tertiary environment. In
B. Hegarty, J. McDonald, & S.-K. Loke (Eds.), Rhetoric and reality: Critical perspectives on
educational technology. Proceedings ascilite 2014 (pp. 410–415). Dunedin, New Zealand.
Retrieved from http://ascilite2014.otago.ac.nz/proceedings/

Jenkins, H., Clinton, K., Purushotma, R., Robison, A., & Weigel, M. (2006). Confronting the challenges
of participatory culture: Media education for the 21st Century. Chicago, Il: MacArthur Foundation.

Johri, A., Teo, H. J., Lo, J., Dufour, M., & Schram, A. (2014). Millennial engineers: Digital media and
information ecology of engineering students. Computers in Human Behavior, 33, 286–301.
doi:10.1016/j.chb.2013.01.048

Jones, C., Ramanau, R., Cross, S., & Healing, G. (2010). Net generation or digital natives: Is there a
distinct new generation entering university? Computers and Education, 54(3), 722–732.

Khoo, E, Johnson, E M, Torrens, R, Fulton, J. (2011). It only took 2 clicks and he'd lost me:
Dimensions of inclusion and exclusion in ICT supported tertiary engineering education. In Y. M. Al-
Abdeli & E. Lindsay (Eds.) 22nd Annual Conference for the Australasian Association for
Engineering Education, 5-7 December 2011 (p.166-171). Engineers Australia: Fremantle, Western
Australia.

Khoo, E., Hight, C., Torrens, R., & Cowie, B. (2013). Copy, cut and paste: How does this shape what
we know? TLRI research in progress. Retrieved from http://www.tlri.org.nz/tlri-research/research-
progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know or from the TLRI
website http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-
paste-how-does-shape-what-we-know

Kvavik, R. B. (2005). Convenience, communications, and control: How students use technology.
Retrieved from http://universityfinancelab.com/wp-content/uploads/2011/04/Con.pdf

Livingstone, S., Wijnen, C.W., Papaioannou, T., Costa, C. & del Mar Grandío, M. (2014). Situating
media literacy in the changing media environment: critical insights from European research on
audiences. In N. Carpentier, K. C. Schrøder & L. Hallet (Eds.), Audience Transformations: Shifting
Audience Positions in Late Modernity, Routledge Studies in European Communication Research
and Education, Vol. 1 (pp. 210 -227). NY: Routledge.

http://ascilite2014.otago.ac.nz/proceedings/
http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://www.tlri.org.nz/tlri-research/research-progress/post-school-sector/copy-cut-and-paste-how-does-shape-what-we-know
http://universityfinancelab.com/wp-content/uploads/2011/04/Con.pdf

Manovich, L. (2013). Software Takes Command (International Texts in Critical Media Aesthetics, Vol.
5). NY: Bloomsbury Press.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research: A philosophic and practical
guide. London: Falmer Press.

Peeters, J., Backer, F. D., Buffel, T., Kindekens, A., Struyven, K., Zhu, C., & Lombaerts, K. (2014).
Adult learners’ informal learning experiences in formal education setting. Journal of Adult
Development, 21(3), 181–192. doi.10.1007/s10804-014-9190-1

Valtonen, T., Dillon, P., Hacklin, S., & Väisänen, P. (2010). Net generation at social software:
Challenging assumptions, clarifying relationships and raising implications for learning. International
Journal of Educational Research, 49(6), 210–219. doi:10.1016/j.ijer.2011.03.001

Acknowledgements

The authors gratefully acknowledge funding support from the Teaching and Learning
Research Initiative, New Zealand Council for Educational Research, Wellington, New
Zealand.

Copyright

Copyright © 2015 Elaine Khoo, Craig Hight, Rob Torrens and Gareth Ranger: The authors
assign to AAEE and educational non-profit institutions a non-exclusive licence to use this
document for personal use and in courses of instruction provided that the article is used in full
and this copyright statement is reproduced. The authors also grant a non-exclusive licence to
AAEE to publish this document in full on the World Wide Web (prime sites and mirrors), on
Memory Sticks, and in printed form within the AAEE 2015 conference proceedings. Any other
usage is prohibited without the express permission of the authors.

