
Introduction  

At The University of Western Australia, similarly to many others, engineering students are 
expected to learn fundamental concepts in mathematics in their first year and to apply them 
later in engineering. Students often struggle with these concepts and cannot foresee their 
relevance to engineering. This study contributes understanding that will be important to 
educators seeking to address this problem. Whereas other studies, including a thorough 
approach at our university, have coordinated mathematics topics and their engineering 
applications as part of curriculum development, this study delves deeper than previous 
studies by investigating how the mathematical concepts are presented and explained in 
mathematics and engineering. 

The study is framed by threshold concept theory. Within this framework it is understood that 
curriculum developers can improve student learning by identifying the concepts that are most 
transformative and critical to future learning or practice in the discipline, namely ‘threshold 
concepts’, and ensuring that students have sufficient opportunity and support to develop 
understanding of these (Meyer & Land, 2003). This study follows recommendations based on 
an Australian study to identify engineering foundation threshold concepts, in which many 
mathematical threshold concepts were identified (Male, 2012).  Engineering students in that 
study identified the abstract nature of mathematics, and the apparent lack of relevance to 
engineering, as troublesome features of threshold concepts in mathematics.  They 
suggested indicating the engineering application of mathematical concepts at the time each 
is first introduced to students (Male, 2011; Male & Baillie, 2014). The idea to integrate 
engineering applications when teaching mathematics has been adopted or recommended 
elsewhere in Australia, and in Europe and the USA (Güner, 2013; Hirst et al., 2004; Wandel, 
2010).  

The obvious way to integrate engineering applications when teaching mathematics is to 
include engineering applications in mathematics classes. However, informed by threshold 
concept theory, we asked whether the issue is complicated by additional factors beyond lack 
of examples demonstrating the relevance of the mathematics. Threshold concept theory 
proposes that by identifying the troublesome features of concepts, educators can develop 
initiatives to support students to overcome the thresholds. Threshold concepts can be 
troublesome for any reason and several common reasons are identified in threshold concept 
literature. In addition to other reasons, students can find concepts troublesome due to 
abstract knowledge, language, complexity, unfamiliar ways of thinking, and features that are 
counter-intuitive (Perkins, 2006). Troublesome language can include new language or 
language used differently from familiar usage (Meyer & Land, 2003, p. 9). We analysed the 
language of mathematics including the terminology and notation, comparing that used where 
concepts are taught in first year mathematics with that used when the concepts are applied 
in engineering. 

We asked: 

1. What are some real-world engineering examples that can be used in first year 
mathematics to demonstrate the relevance of the mathematics? 

2. How is the language used to present mathematical concepts when they are applied in 
engineering similar to and different from the language with which the concepts are 
first introduced to engineering students in mathematics? 

3. How do students respond to the identified mathematical concepts in engineering and 
mathematics as they are presented and explained? 



Method 
The first author of this paper is a mathematician and engineer in an engineering school and 
teaches second year, third year, and masters (fifth year) engineering units. She collaborated 
with the third author who was teaching mathematics to first year engineering students, in 
order to connect the teaching and application of mathematics between their units and 
thereby support students’ learning.  For certain topics in a first year mathematics unit, we 
identified relevant and important applications in a second, third year engineering and Masters 
of Professional Engineering unit. The third author peer-reviewed at least two lectures and 
one tutorial taught by the first author in both 2012 and 2014 in the third year unit Reservoir 
Characterisation, and also in 2014 in the second year unit Motion and masters unit 
Petroleum Engineering. The first author peer-reviewed three first year mathematics lectures 
and a two-hour tutorial of the third author. The foci of the peer reviews were how 
mathematics topics were presented and how students responded to this. The peer-reviewed 
classes were selected to include teaching or application of the same important mathematical 
concepts. Significantly, the first author’s interdisciplinary background enabled a detailed 
analysis of the mathematical concepts in both disciplines. The first and third authors noted 
student reactions such as questions, comments and difficulties. 

Findings 
We found differences between the notation used in mathematics and engineering, and that 
the engineering units employed mathematical tools with little reference to the material 
learned in first year. Potential for improving the connections between mathematics and 
applications were identified for flow rate or flux (which applies to calculation of velocity), 
binomial distributions (which apply to calculation of effective permeability of a sample), and 
coordinate transformations (with application to calculation of directional permeability). The 
binomial distribution was applied in petroleum engineering in mixtures of random variables in 
geological sediments and notation from mathematics required further explanation before 
application in order for the students to recognise it. Coordinate transformations were applied 
and derived in petroleum engineering to rotate coordinates when permeability was measured 
in core sample plugs of various orientations.  

The example of flux or flow rate is described below. Following engineering applications, we 
present the mathematics as it appeared in a first year mathematics unit, and describe how 
we addressed the inconsistencies.  

Flux is the change of a quantity over a surface, often per unit time. Many types of flux are 
calculated in engineering. Applications in the units investigated in this study included mass 
flow rate and thermal flux. 

In the second year engineering unit Motion mass flow rate was calculated and used in the 
conservation of mass or mass balance equation. The rate of accumulation of mass within a 
system equals the sum of the mass flow rates into the system minus the sum of the mass 
flow rates out of the system. 
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where �̇�𝑑 is the mass flow rate or rate at which mass cross the boundary in kg/s.  



In equation 1, students were presented with the dot notation that is commonly used in 
engineering to indicate differentiation with respect to time t. While this is likely to be tacit to 
engineering academics, several engineering students were not familiar with it. Flux was 
presented in this application as summation rather than integration.  

Equation 1 presents the concept of a conservation and accounting principle in a rate form. 
Mass is a scalar variable and in equation 1 the system is represented without dimensions. 
The formal representation of this idea requires integration over the volume and boundary of 
the system. In the engineering unit this appeared later in the example of velocity calculation. 

  

           (2) 

where ρ is the density of the fluid (kg/m3) and  vn is the normal component of the velocity 
vector (m/s). 
 
In the third year and masters level petroleum engineering units, thermal flux was presented 
in Fourier’s Law: 
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where:  

k is thermal conductivity (Wm-1K-1). 

A is the area of the surface through which heat flows, normal to the direction of flow which is 
aligned to x. 

Q is heat (J).  

T is temperature (K). 

t
Q
∆
∆  is heat rate (W), with the negative sign indicating direction of flow. 

In equation 3, flux was presented to students using increments rather than derivatives and no 
integral was necessary. The increments were used instead of derivatives, to facilitate 
visualisation of the concept. 

Despite no integral appearing in either of the above two cases where flux appeared, “flux 
across a surface” was introduced to students in mathematics in first year as follows (Bassom 
et al., 2014, p. 73).  

Given a vector field F of R3 and some surface S with a parametric representation S(u, v) for 
(𝑢𝑢,𝑣𝑣)  ∈ 𝐷𝐷, the flux across S (in the standard direction of the unit normal vector n) is 
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If C is a closed surface, we make sure that N points outwards (by interchanging the roles of u 
and v if needed). 

 

The notation used in the first year mathematics unit (equation 4) was thus very general as it 
allowed for a vector field and a generic surface. It could be adapted readily to any specific 
application in engineering. Examples of adaptions are given in equations 1, 2 and 3. Other 
examples of applications in engineering include topics such as electrodynamics where 
magnetic flux is calculated.  

Students indicated that they found the mathematical definition very abstract. Though some 
schematic visualisations were provided in the mathematics unit, the future relevance to 
specific three dimensional visualisations was not yet apparent to students. Moreover, 
connections of the mathematical definition to the applications in engineering were often very 
difficult for students to see. For example, the mathematics unit sometimes used a double 
integral to represent integration over the surface (right hand side of equation 4), whereas in 
the Motion unit a single integral was used (equation 2). Students described the single integral 
for integration over a surface as conflicting with their intuition that the single integral was  
used for integration along a curve and not a surface.  

The mathematical concept of flux across a surface was developed visually in the 
mathematics unit, based on ideas of the Riemann integral. Here, increments in u and v 
directions were considered. Some students reported in the Motion unit that they considered 
these explanations to be solely relevant to understanding the mathematical foundations and 
therefore they tended to disregard the explanations and memorised the final formula. 
However, the importance of the mathematical explanation can be seen from the application 
of the increments in Fourier's Law (equation 3).  

Discussion 

Recommendations 
This study revealed that the links between different notations and explanations used in 
mathematics and engineering were not clear for the students in the classes taught by the first 
and third authors. A possible source of the problem is that the links are tacit for academics 
and therefore not presented explicitly. This could lead to further unrecognised complications 
for students if  academics in the two disciplines do not discuss their teaching with each other 
so that they are aware of similarities and differences between the notations and conceptual 
explanations that they use. We recommend continued communication between academics in 
mathematics and engineering regarding their teaching, especially notations and explanations 
used and the applications of mathematics in engineering. Interdisciplinary workshops 
involving academics who teach into engineering programs from various scientific disciplines 
and in various engineering fields could stimulate academics to coordinate their teaching not 
only at the topic-level but also such that students are supported in recognising connections 
within programs and diversity in terminology and notation is clarified for students.  



If not consistently represented, concepts and how they are presented and explained could be 
cross-referenced between units. Eccles’ expectancy value theory explains that one of the 
factors that motivates people towards a task is ‘perceived utility value’ which is perceived 
value for the person’s future (Brown, McCord, Matusovich, & Kajfez, 2014). If academics in 
mathematics refer to future relevance, not just of the topic in general but the conceptual 
understanding of the explanation, this could motivate students to follow the explanations, and 
also equip them with the skill to adapt the concepts to future applications.  

By teaching mathematics with engineering, rather than referencing engineering applications 
when teaching mathematics, it might be possible to reduce the problem identified in this 
paper. Hennig, Mertsching, and Hilkenmeier (2015) taught mathematics alongside 
engineering in a fundamental electrical engineering unit, to address issues of diversity in 
levels of mathematics studied among the engineering students. For similar reasons, Bhathal 
(2015) provided online tutorial systems to support students to revise relevant mathematical 
concepts before new engineering physics topics were introduced. 

This investigation has drawn attention to a problem that requires rigorous investigation to be 
understood more thoroughly in order to design and test interventions.  Better understanding 
of the thresholds that students face in applying mathematical concepts in engineering will 
require further investigation of how students experience the development of understanding of 
mathematical concepts at various stages in their education programs.  

Baillie, Bowden, and Meyer (2013) combined threshold concept theory and capability theory 
to develop threshold capability theory. A student who has developed a threshold capability 
can respond to an unseen problem by identifying the significant features of the situation and 
developing and implementing a plan to build on relevant knowledge and respond 
successfully to the situation. Threshold capabilities rely on one or more threshold concepts. 
Our vision is for engineering students to have the capability to approach an unseen 
engineering problem and be able to recognise the salient features of the problem and identify 
and apply relevant mathematics including mathematical threshold concepts. Consistent with 
this perspective, Booth (2008) recommends that engineering students be supported in 
developing the ability to address a problem by working out what they can use of what they 
know and what they need to know. A repertoire of mathematical tools including a variety of 
notations is likely to be valuable for this purpose. The vision raises questions for further 
investigation.  

While consistency in notation may simplify students’ learning, there are also potential 
benefits to demonstrating diverse representations especially where these indicate nuanced 
conceptual understanding. Leppävirta (2011) recommends greater focus on conceptual 
understanding. It is not clear whether consistent notation or diverse notation would be most 
helpful in achieving this. Furthermore, Gainsburg (2015) draws attention to the importance of 
engineering students developing different levels of epistemological views towards 
mathematics methods, and recognising links between diverse approaches is part of this 
development. 

Considering these perspectives on mathematics education for engineering, in responding to 
the preliminary findings of this study, discussion and cross-referencing between units could 
be preferable to uniform selection of notations and terminology. We expect it will be most 



valuable to encourage students to discuss, connect, and try to use various notations and 
consider the features of situations in which they are most suitable. 

Limitations and Further Research 
This investigation found troublesome features of applications of mathematical concepts 
experienced by engineering students in the units investigated. To develop curriculum 
improvements, further study is needed to investigate students’ experiences of understanding 
and applying mathematical threshold concepts.  

Further research will be required to evaluate the impact of efforts to improve links between 
mathematics and engineering. Exercises in which students identify and discuss connections 
between mathematics and various applications in engineering could be developed to both 
collect data and facilitate capability development by the students. 

Further investigation of the nuances in conceptualisation reflected in the differences between 
the language notation used in mathematics and in engineering could also lead to deeper 
understanding and improved collaboration between the disciplines.  

The applications of mathematics identified in this study were in mechanical and petroleum 
engineering units. Examples in other engineering disciplines should also be identified, 
especially as engineering is often taught with common foundation units in mathematics 

Conclusions 
In this study we have identified examples of engineering applications of mathematics and 
discovered that there are significant differences in notation and explanations in mathematics 
as taught in mathematics and applied in engineering. Representations in mathematics are 
abstract and general compared with those used in engineering. Identifying engineering 
examples for the mathematical concepts may not provide sufficient support for students. 
Possible strategies to support students in overcoming thresholds in mathematics are to 
improve the consistency in notation, or to introduce cross references between units including 
notations and explanations of the mathematical concepts. Discussion and trial of alternative 
representations and their suitability for various contexts could also be found to be valuable. 
We recommend that academics who teach mathematics to engineering students, and those 
who teach engineering units, discuss how they teach and apply mathematical concepts. 
They should delve beyond identifying mathematical concepts and applications in 
engineering, and consider development of levels of abstraction throughout the engineering 
program such that students can develop capability to apply mathematics in unseen 
engineering problems. 
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