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Introduction 

A circular cylinder and sphere are major subjects in the fields of aerodynamics and fluid 
dynamics. Potential flow around a circular cylinder is widely taught and the lift is explained by 
the circulation around a circular cylinder. The subject is extended to Joukowsky aerofoil via 
conformal mapping. The velocities and pressure around the aerofoil are calculated 
analytically, and therefore, they are very important although numerical solutions are readily 
available. The same is true for a sphere in the low Reynolds number flows. An exact 
analytical solution is obtained for the problem, i.e. the Stokes sphere. 

The experiments on the aerodynamic drag on circular cylinders and spheres are also 
classical subjects and are well documented (Vennard and Street, 1982). The drag 
coefficients of these bluff bodies are important not only in engineering applications but also in 
sports aerodynamics (Kundu and Cohen, 2004). Critical velocity and unsteady vortex 
shedding cause varieties of the flight path in football, volleyball, tennis, baseball, golf ball, 
ping pong, and so on. 

In this paper, several aerodynamic experiments conducted during the course of the fluid 
dynamics project for engineering students to enhance their intuitive and direct understanding 
of aerodynamic forces are described. Aerodynamics education often tends to be too abstract 
and many students are lost in the mathematical equations. The drag measurements of a 
sphere by the balance are explained, together with the pendulum method where the students 
can visibly experience the force. The Magnus effect is demonstrated by the free fall of a 
spinning ping-pong ball. Further, the lift of the spinning ping-pong ball pasted at the tip of a 
miniature motor is measured to quantify the Magnus effect. For the analytical approach, the 
Stokes sphere spinning around the axis parallel to the uniform flow is studied; circular flow 
may be added without changes in the original solution. It is an important insight for the 
engineering students that a potential circulation can be superimposed to viscous flow 
solutions. 

Drag measurement 

One of the simplest techniques for measuring the aerodynamic drag of a sphere is shown in 
Fig.1, where a  and b  are the arm lengths of the bar, D is the drag, g is the gravitational 

acceleration, m  is the mass of the sphere ( )mg D , T is the tension of the string, V is the 

uniform velocity, and the suffix 0 indicates the initial condition. A low-speed wind tunnel with 

a vertical exit (300 mm x 300 mm) is used to provide an upward flow in Fig.1. The exit 
velocity is controlled by a frequency inverter KVFS237, Kasuga E.K. Ltd. for 200 V 50 Hz. 

Initially, the mass of the sphere is balanced by a stationary mass  m on an electronic 

scale, and the scale is set to zero. The drag of the sphere is measured as a reduction of the 

tension 
0T T , which is equal to the reading of the scale when a b . 

Another intuitive method to measure the aerodynamic drag of a sphere is using a pendulum, 
as shown in Fig. 2. The drag can be calculated as  

tanD mg  , 

where F is the resultant force, l is the length of the string, s is the horizontal displacement, 
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and   is the angle of the pendulum. Figure 3 shows the results of a softball with a diameter

90 mmd  using the pendulum method. The drag coefficient about 0.6DC  is obtained, which 

is slightly higher compared to that of a magnetically suspended smooth sphere (Sawada, 
2014; Okuizumi, Sawada, Nagaike, Konishi, and Obayashi, 2018). The drag measured using 
the balance in Fig. 1 provides similar but slightly higher values owing to the excessive drag of 
the support, and the drag coefficient at the low Reynolds number Re  based on the diameter 

becomes smaller and seems to be erroneous. The accurate drag prediction also needs wind-
tunnel wall correction (Brown and Lawler, 2003). 

 

Figure 1: Drag measurement of a sphere using a simple balance  

 

Figure 2: Drag measurement of a sphere using a pendulum 

 

Figure 3: Drag coefficient of softball 90 mmd  using the pendulum method  
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Magnus effect 

Aerodynamic force on a spinning ball causes a lateral movement, called the Magnus effect, 
which is often observed in various ball sports, i.e. baseball, volley ball, football, tennis, and 
ping-pong (Kundu and Cohen, 2004). In aerodynamics education, a circular cylinder with a 
circulation  is analyzed by the potential flow theory and the lift is obtained using the Kutta–
Joukowsky theorem. However, the theoretical expression for a spinning sphere is not 
available due to the complexity of the flow structure although there are numerous numerical 
and experimental studies. The Magnus effect experiments are reported by Alaways and 
Hubbard (2001), and Sareen, Zhao, Sheridan, Hourigan, Thompson, and Jacono (2016). A 
detailed numerical study is provided by Muto, Watanabe, Tsubokura, and Oshima (2011). 
The Magnus effect is summarized as a function of the spin ratio, although the results are 
diverse due to the wide range of the Reynolds number. 

A free fall experiment with a ping-pong ball of diameter 40 mmd  and mass 2.2 gm  is 

shown in Fig. 4. The ball falls straight downwards without spin; however, it turns either right 
and left depending on the direction of the rotation. This experiment is effective to 
demonstrate the Magnus effect because the deflection in the orbit is quite visible owing to the 
small mass of the ball.  

Flow visualization is an indispensable tool in aerodynamics education, and Fig. 5 shows the 

flow around a spinning sphere with / 2a U    and 41.1 10Re   . 

Further, it is interesting to measure the lift of a spinning ping-pong ball attached on a small 

balance as shown in Fig. 6. A ping-pong ball with a diameter 40 mmd   and the mass 

2.2gm  is taped at the tip of the shaft of a small model electric motor and the corner flow U

from a 600 mm x 600 mm low speed wind tunnel is blown to the ball. In this experiment, 

students can experience the lift owing to the spin directly in the unit of gram-force from the 

digital readings of the electronic balance as shown in Fig. 6, which is otherwise given as a 

voltage from the amplifier.  Figure 7 shows the summary of the experiment at the Reynolds 

number 41.9 10Re    in the non-dimensional forms, where LC is the lift coefficient, PC is the 

overall power coefficient, QC is the apparent torque coefficient based on the motor input 

power P , L is the lift, q is the dynamic pressure,  r a is the radius  / 2d , S  is the cross-

sectional area of the ping-pong ball, and  /LC L qS ,  /PC P qSV and  /QC T qSr . 

A six-component balance is used to measure the aerodynamic forces of a spinning ball. The 
unsteady aerodynamic forces are also measured. 

A baseball with inner sensors named MA-Q by Mizuno, Ltd., Tokyo (2019)  was used  to 
measure the average ball speed, ball rotation, and inclination of the axis of rotation from the 
horizon. Some of the output from the baseball to a cellular phone is listed as a spreadsheet 
format in Table 1. Therefore, the pitcher could modify and improve his own throws from these 
measurements, i.e. the ball speed and the rotation for example. 

Table 1: Baseball sensor output 

 

year month day time pitcher arm throw type of pitch ball speed (km/h) ball rpm ball inclination  (deg.) comments

2019 7 6 11:07 S right-handed three-quarter straight(four-seam) 100.7 1471 -

2019 7 6 11:11 S right-handed three-quarter straight 100.4 1376 9

2019 7 6 11:24 S right-handed three-quarter two-seam 99.1 1359 34

2019 7 6 11:19 S right-handed three-quarter two-seam 97.1 1207 10

2019 7 6 11:23 S right-handed three-quarter two-seam 96.8 1324 11

2019 7 6 11:23 S right-handed three-quarter two-seam 95.9 1408 43

2019 7 6 11:22 S right-handed three-quarter two-seam 93.8 1179 9

2019 7 6 11:26 S right-handed three-quarter two-seam 89.9 1224 12 two-seam (variation)

2019 7 6 11:29 F right-handed three-quarter two-seam 79.6 1409 25

2019 7 6 11:09 F right-handed three-quarter straight(four-seam) 79.5 1369 45

2019 7 6 11:27 F right-handed three-quarter two-seam 79 1255 14

2019 7 6 11:21 F right-handed three-quarter two-seam 78.1 1078 36

2019 7 6 11:28 F right-handed three-quarter two-seam 77.7 1369 16 curve
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Figure 4: Free fall of a spinning ping-pong ball along the vertical lope 

 

Figure 5: Visualized Magnus effect ( / 2a U    41.1 10Re   ) 

 

Figure 6: Spinning ping-pong ball on an electronic balance 

 

Figure 7: Magnus effect 
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Analytical solution for a Stokes sphere slowly spinning 
around the z-axis  

The axisymmetric Stokes solution for a sphere at very low Reynolds numbers is known 

(Panton, 1984; Warsi, 1999). The radial and polar velocity components ru  and u together 

with the stream function  are expressed in closed analytical forms. The velocity and stream 

lines are functions of r  and , where r is the radial coordinate and   is the polar angle. The 

drag coefficient 24 /DC Re is obtained, where Re  is the Reynolds number based on the 

diameter of the sphere.  

We may consider the situation that the Stokes sphere spins slowly at a constant angular 

velocity 
z around the z-axis parallel to the uniform flow. In the  , ,r   spherical coordinate, 

we can assume that the azimuthal derivative is zero, i.e. / 0   , while the velocity 

component in the same direction exists. 

The continuity and momentum equations in the r - and  - directions are assumed to be the 

same as the original calculation because of the very low spinning rate. Then, the stream 
function and velocities remain unchanged and the Stokes solution is applied. The momentum 
equation in the  -direction becomes 

2

2 2 2 2

1 1
sin 0

sin sin

u
r u

r r r r r




   

       
      

       
,   (1) 

where the inertia terms are neglected (Goldstein, 1965). Equation (1) is independent from the 
viscosity and one of the possible and simple solutions could be a free vortex 

2 sin
zu a

r



  ,       (2) 

where 
2

za  is a constant determined from the boundary condition on the surface of the 

sphere sinr a zu a     . Equation (2) is superimposed to the Stokes solution. A similar 

superposition of the free vortex to the buoyancy viscous pipe flow is shown to simulate a 
thermal whirl (Morishita, Kumagai, Onodera, Kubota, Moriyama, and Yamazaki, 2018). 

Some of the stresses on the sphere are 0  , and 

1
2 sin

sin

r
r r a z

u uu

r r r

 

   
 



 
     

  
 .   (3) 

The torque T  around the z-axis becomes 

    3

0

16
2 sin sin

3
r zT a ad a a



             .   (4) 

The torque coefficient QC is obtained as  

  
2 2

1 64

1 3

2

z
Q

aT
C

Re U
U a a



  


 
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  

.     (5) 

Figures 8 (a) and (b) with the coordinate illustration show the path-lines on the stream tube at 

/ 1za U    with  2/ 0.011a U    and 0.113 , respectively (Mathematica 2018). The stream 

tube is not affected by the spin around the z -axis by the present assumption. 
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The flow moves upwards, i.e. to the positive z-direction. The rotation of the sphere is 
noticeable near the surface, see Fig.8. It is useful for the engineering students to find that the 
potential circulation can be added to the Stokes flow which remains unchanged in spite of the 
rotation. The similar vortex superposition might be possible to the Hagen-Poiseuille flow 
which is an indispensable subject in the aerodynamics education.  
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Figure 8: Path-lines on the stream tube around a sphere / 1r a   spinning at / 1za U    

 

Concluding Remarks 

Several experimental problems and an analytical example of aerodynamics of a sphere are 
used as engineering education tools. A simple mechanical balance and a pendulum are 
introduced to measure the drag of a sphere. Hands-on drag measurements in the units of 
gram-force are very useful for engineering students to understand the degree of 
aerodynamic forces and the converted drag coefficient. Although the drag coefficients in the 
laboratory are the same as those of aircrafts and cars, the values of drag range from grams 
to tons. Magnus effect is often observed in the daily sports event, and it is valuable to 
observe the visualized flow around a spinning sphere how the lift is generated. The lift by the 
Magnus effect is easily demonstrated by a spinning ball on the miniature electronic scale. A 
slowly spinning Stokes sphere around the axis parallel to the uniform flow is solved 
analytically, which has the same stream tube as the original solution despite the rotation. 
Although the vortex superposition is limited to the creeping flows, it might be useful for the 
engineering students to find that a free vortex can be superimposed to the original viscous 
flow solution.  
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