
A Customized and Automated Assignment
Management and Marking System for Evaluating

Student Performance in the STEM Disciplines
Ashkan Shokria, Veronica Halupkab, Michael Croccob, and Valentijn Pauwelsc

Bureau of Meteorology, Melbourne, Victoria, Australiaa, Faculty of Engineering, Monash University, Clayton,
Victoria, Australiab Department of Civil Engineering, Clayton, Victoria, Australiac

Corresponding Author’s Email: Valentijn.Pauwels@monash.edu

CONTEXT

A strong increase in student numbers for CIV3204, an introduction to statistics unit taught at
Monash University within an undergraduate engineering course, has been accompanied by
decreased performance in the final exam. Anecdotal evidence suggests that this is caused
by cheating in the in-semester assignments. Based on evidence in the literature that
individualized assignments result in reduced cheating, and that automated marking allows for
the completion of more assignments by the students (leading to more practice and
feedback), a system to generate and automatically mark individualized assignments has
been developed. A closed-form solution does not exist for most questions, so existing
methods such as Moodle quizzes could not be used. This paper provides an overview of the
system and the very positive results of the implementation.

PURPOSE OR GOAL

The objective of this study is to improve the students’ performance in the final exam for
CIV320 and their learning in the unit. The hypothesis is that automatically marked
individualized assignments lead to reduced cheating and the completion of more
assignments, and consequently an improved performance in the final exam. A user-friendly
system working through Moodle has been developed for this purpose.

APPROACH OR METHODOLOGY/METHODS

An individualized assignment was generated for each of the 11 topics in the unit, which was
automatically marked. Detailed feedback was provided to the students afterwards. This level
of assessment would have been impossible to achieve with manual marking. The
performance of the cohort in the final exam and the Student Evaluation of Teaching and
Units (SETU) are used to evaluate the system.

ACTUAL OR ANTICIPATED OUTCOMES

The system has led to very positive results. 66% of the students appreciated that the
assignments were the most effective aspects of the unit. The unit received its highest overall
satisfaction in eight years. The failure rate in the final exam decreased from 22% in 2019 to
11% in 2020, even though the final exam was more difficult.

CONCLUSIONS/RECOMMENDATIONS/SUMMARY

The greatest surprise from the study was that the students were very positive about the large
number of assignments, and the automated marking. The students suggested to improve the
python-based Graphical User Interface system, which we will replace with a website. The
system improved the students’ learning through more practice and feedback, evidenced by
their achievement in the exam. Based on the positive outcome, we suggest that automated
marking should be further developed and implemented in the STEM disciplines.

KEYWORDS

Automated marking, individualized assessment, statistics

Introduction
Marking of assignments and exams is a very labour-intensive and thus, costly, task (Vista et
al., 2015) spurring decades of effort to develop automated marking systems, initially focusing
on computer code. Fleming et al. (1988) compared the results of automated versus manual
marking of Fortran-77 codes, concluding human markers placed undue emphasis on
cosmetic (versus functional) aspects and Jackson (1996) showed that automation led to
faster and more comprehensive marking. However, Cheang et al. (2003), who developed a
system to automatically mark student C++ codes for a class of more than 700 students,
argued that there were not only positive outcomes of accuracy and more focused
assessment, but also complexity limitations and inadequate feedback.

More recently, generic code markers, like that of Blumenstein et al. (2008), and spreadsheet
and database management evaluation systems of J. Kovacic and Green (2012) have been
developed. Both Naude et al. (2010) and Vujosevic-Janicic et al. (2013) demonstrated high
correlation between manual and automated marking using graph similarity. Partial marking of
Structured Query Language codes was enabled by Chandra et al. (2015), while Kiraly et al.
(2017) describe a system to automatically mark JAVA codes for Massive Open Online
Courses (MOOCs). Further advances have been seen from Conejo et al. (2019), who
developed an approach based on well-founded assessment theories (Classical Test Theory
and Item Response Theory) and Janicic and Maric (2020) used regression verification. Ma et
al. (2020) developed a machine-learning-based peer tutor recommender system, concluding
that student learning improved with the automated system; mainly because students could
complete more assignments in the available time. In their study of automated computer code
marking, Aldriye et al. (2019) concluded that two issues persisted: the systems tend not to
work on all operation systems and feedback quality was poor.

Automation of essay marking has also received significant attention. Reilly et al. (2014)
compared two automatic systems to human markers for approximately 15,000 student
submissions, concluding further improvements were still needed. Systems, such as that
developed by Vista et al. (2015) can analyse an essay based on predefined rubrics and
reduce workload by highlighting important content to the expert marker. Meanwhile, a
comparison of automated and manual marking of open-ended writing assignments by Reilly
et al. (2016) showed that the automated system disadvantaged non-native English speakers;
evidencing human markers’ tolerance for imperfect language and willingness to focus on
content. Later, Zupanc and Bosnic (2017) developed improvements to such systems by
incorporating additional semantic coherence and consistency attributes, demonstrating
increased accuracy compared to nine existing systems.

Several attempts have made to automate the marking of assignments in the exact sciences.
Stockburger (1999) developed a web-based system to automatically generate and mark
homework for statistics units. A machine-learning based method to automatically mark open-
ended questions in creative problem-solving was developed by Wang et al. (2008) and
demonstrated high correlation with manual marks. Donnelly et al. (2015) developed a system
to automatically provide tailored feedback to middle school students of thermodynamics,
depending on the quality of the original essay and concluded that the guidance was more
effective for students with lower prior subject knowledge. A system to automatically score
students’ graph construction learning was developed by Vitale et al. (2015). Barana and
Marchisio (2016) strongly advocated to automate formative assessment in mathematics and
science. For applications in chemistry, a web-based automated marking system is described
in Munoz De La Pena et al. (2013) and a spreadsheet-based method was introduced by
Carberry et al. (2019). Lee et al. (2019) developed a more advanced method of automating
marking of open-ended questions and concluded that the system caused significant
improvements to uncertainty-infused scientific argumentation from pre-test to post-test. A
different approach was used by Zhu et al. (2020), who examined the effect of automated
feedback on students' revision of scientific arguments. While all studies mentioned above

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

focused on assignments in English, Cinar et al. (2020) developed a machine learning
algorithm for grading open-ended physics questions in Turkish. Machine learning has also
been used to automatically mark assignments in a number of different fields, including
medicine (Gierl et al., 2014), computer programming (Blikstein et al., 2014), and physics
(Zhang et al., 2020). Zhai et al. (2020) provide an overview of the application of machine
learning in the assessment of scientific assignments, concluding that it can significantly
improved the automaticity of examining and scoring complex constructs such as explanation,
argumentation, scientific inquiry and problem-solving, and thus is promising for next
generation science assessments.

At Monash University, the delivery of CIV3204 (Engineering Investigation), an introduction to
statistics unit in an undergraduate engineering course, has faced a number of problems over
the last few years. Along with nearly 3-fold growth in enrolments, we have witnessed an
increased rate of academic infringements (cheating) in continuous assessment; logically
leading to inferior understanding and subsequent poor summative results which is evidenced
by the increase in failure rate seen during this period from approximately 10% to as high as
27%. This situation has forced the Unit Coordinator to drastically restructure the approach to
continuous assessment to one which discourages cheating and ensures students invest time
in the formative assessment tasks.

This paper focuses on the development and operation of an automated generation and
marking system of individualized assignments for this unit and the lessons that have been
learned in its first application. An overview of the results of the implementation of the system,
including an evaluation by the students and an analysis of the impact on their final
examination performance, is also provided.

Purpose or Goal
The objective of this study is to improve the students’ performance in the final exam for
CIV304 and their learning in the unit. The hypothesis is that individualisation of assessments
will discourage cheating, while automatic marking will enable more immediate feedback on a
greater number of assignments completed by students; consequentially, increased student
engagement (practice) should improve final exam performance and knowledge acquisition. A
user-friendly system working within the Moodle Learning Management System (LMS) has
been developed for this purpose.

Approach or Methodology/Methods
The Workflow

The system was developed based on a number of prerequisites. These are:

1. Each student must work with individualized data.

2. The system must allow a range of question types, including questions of stochastic
nature, which inherently include uncertainty in the answers.

3. The students must be able to submit their answers in a user-friendly manner.

4. The system must work through the e-learning system, more specifically Moodle.

5. The system must lead to challenging questions, and not provide direct information on
how to solve the problems.

6. The system must work on all operating systems (more specifically Windows, Mac,
and Linux).

7. The students must receive constructive feedback on their submissions.

The system has been coded in python, ensuring it can work on all platforms. The overall
principle is that all information exchange from assessment generator to student and to
marker is passed through Moodle. To begin, questions, random numbers, and input files are

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

generated for each student. The input files contain the random numbers that make up the
question being asked and any further data that students need to answer the question in the
form of input files. If a question, for example one on probability, can be constructed using
different random numbers contained in the pdf, students do not need a separate input file.
On the other hand, students may be asked to calculate a sampling distribution of a specific
data set; in which case they will need the input file.

It is important to note that the random number generator is a pseudo-random number
generator, using a seed that is based on the student ID number. This has the advantage of
the same random number set being obtained for each student every time questions are
regenerated.

The system creates a directory (folder) for each student following the conventions of
MOODLE. These directories can later be zipped into one file which can be uploaded on
MOODLE. The uploaded files include, for each student, the pdf with the assignment
questions, a Graphical User Interface, and the input file for each question (if this is
necessary).

The students can then download their assignment files and enter the answers in the
Graphical User Interface, which generates Excel files following a naming convention which
includes the student ID number, for later traceability. Students then submit their spreadsheet
files via Moodle, and markers download all student submissions at once. The marking script
then marks all submissions and writes all feedback to a single file per student. Feedback files
are then batch uploaded to Moodle for review by individual students.

Generating Questions

In order to generate a unique question, two Python subroutines must be modified. The first,
“input maker” creates random numbers and data. These could be, for example when doing
hypothesis testing, the sample sizes, the means and standard deviations of the samples, and
the confidence level. The upper and lower limits for these random numbers need to be
specified, as well as the distributions from which they are drawn. The second subroutine that
needs to be modified is “tex maker”, which uses these random numbers to generate the
question to be solved by the students (“tex” referring to LaTeX, the standard markup
language used in scientific writing). The system then uses these subroutines to typeset a pdf
of questions for the students.

The Graphical User Interface

The next step is setting up the Graphical User Interface (GUI) for the students. Two short
python codes need to be modified for this purpose. The first is structureMaker.py, which
generates a YAML file with the structure of the GUI. Essentially, this program can be set up
by copying from example programs, and lists, for each row in the GUI, which variable needs
to be entered, and how it should be entered (from a drop-down menu or by manually entering
the number). The second is the program for the GUI itself. This program specifies the
assignment and question number, the order in which the variables entered by the students
must be saved, and can be developed by copying from example programs. Figure 1 shows
an example of the resulting GUI for a question on hypothesis testing.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

Marking Questions

This is the part of the system in which the user has the most freedom. Three subroutines
must be modified here.

1. input loader: Here the inputs written in the csv file (for example, the random numbers
described in Section II-B) are read in and stored in a vector (or matrix) “inputs”.

2. result loader: Here the results from the students are read in, and entered in the vector
or matrix “results”.

3. marker: This subroutine uses the vectors or matrices “inputs” and “results”, and
generates a LaTeX string “feedbacks” and a number “mark”. As the name suggests,
“feedbacks” contains the feedback that is written to the feedback file for the student.
“mark” contains the student’s mark for this specific question. In this subroutine, the
user needs to calculate the correct answers to the

4. question: compare the student’s answers to the correct answers, and calculate the
mark for the question and generate the feedback.

It should be noted that the system makes consequentially marking questions very easy. If an
intermediate error when solving the question is made, the system can calculate the pseudo-
correct answer, compare the student’s response to this number, and assign a lower mark.

Types of Questions Enabled by the System

The most straightforward questions are those that require simple calculations. The marking
software can compute the correct answer, compare the correct answer to the student’s
response, and mark the answer as correct or incorrect using a specified tolerance. These
type of questions include hypothesis testing, analysis of variances (ANOVA), regressions,
etc. Other straightforward questions are multiple choice questions, which can be developed
using the dropdown menu option. A further benefit of the system is that it can also work with
questions that are stochastic in nature and, thus, must support uncertainty in the answers.
One such question is the calculation of a sampling distribution. In one instance, students
were provided an individualized data set from which they had to calculate the sampling
distribution of the mean, using a sample size of three, and 10,000 repetitions. They were
then provided six different sampling distributions, of which one was correct.

Actual or Anticipated Outcomes
By operationalizing the system for the unit in the second semester of 2020, a number of

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

Figure 1 Example of a Graphical User Interface (GUI) for a question on hypothesis
testing. This was used on the final examination, hence the question number E1Q1.

lessons could be learned.

A first lesson was that the marking system needed to be made more robust with respect to
the numbers entered by the students. Even though it was made very clear to the students to
only enter numbers in the GUI cells, and no letters or special characters, in the beginning of
the semester this request was consistently ignored. The marker crashed if a string was being
read in while a number was expected. A short subroutine was then written that checked, for
each cell where a number was expected, if a number was entered.

A second lesson what that students Students would often submit files which did not comply
with set guidelines, leading the marking software no to recognize submissions, and
consequently return a mark of zero. A short code was then written to list the missing files for
each student. The zip files were then manually unzipped, and the file names with errors
manually corrected.

Student Evaluation of the System

Table 1. The Student Evaluation of Teaching and Units (SETU)
Question Responses

(2019 / 2020)
Median
(2019 /
2020)

% Strongly
Agree or Agree
(2019 / 2020)

University Wide Items (Summary)
The Learning Outcomes for this unit were clear to me 112 / 67 3.72 / 4.01 59.82 / 79.10
The instructions for the assessment tasks were clear to me 111 / 67 3.51 / 4.03 50.45 / 76.12
The Feedback helped me achieve the Learning Outcomes for the
unit

111 / 67 3.75 / 3.90 60.36 / 70.15

The Resources helped me achieve the Learning Outcomes for
the unit

112 / 67 3.32 / 4.01 45.54 / 79.10

I attempted to engage in this unit to the best of my ability 111 / 67 3.74 / 4.22 61.26 / 86.57
Overall, I was satisfied with this unit 112 / 67 3.51 / 3.95 50.45 / 74.63

Faculty Wide Items (Summary)
The assessment tasks helped me to develop the knowledge and
skills required for this unit

112 / 67 3.76 / 4.10 59.82 / 82.81

I understood the grading criteria used in assessing my work 112 /67 3.73 / 3.89 59.82 / 68.66
This unit contained a good mix of theory and practical 112 / 67 3.68 / 3.89 58.04 / 68.66
The Moodle site was engaging and enhanced the learning
experience

112 / 67 3.65 / 3.97 56.25 / 74.63

The lectures were valuable for my learning 112 / 67 3.53 / 4.02 50.89 / 74.63

Individualized assignments were generated for each of the 11 topics in the unit; they were
automatically marked and detailed feedback was provided for each. This level of assessment
would have been impossible to achieve with manual marking. The performance of the cohort
in the final exam and the Student Evaluation of Teaching and Units (SETU) were used to
evaluate the success of system.

The implementation of the system has led to very positive results for the unit. Table 1 shows
an overview of the Student Evaluation of Teaching and Units (SETU) for the Clayton
campus. Of the 350 students enrolled, 67 participated in the evaluation. The result for the
overall satisfaction question is the highest for the eight years in which the responsible
academic taught the unit. Important as well are the results of the qualitative analysis. The
first question is “Which aspect(s) of this unit did you find most effective?” 42 Students
answered this question, and 28 students stated they appreciated the nine relatively short
assignments, and four students stated clearly that they appreciated that this forced them to
keep on track with the unit.

The second question is: “Would you suggest any changes to enhance this unit in the
future?”, which 44 students answered. Seven students replied that the setup of the GUI’s
could be improved. These have now been replaced with html-based GUI’s, which are much

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

more user-friendly.

Another advantage is that student complaints regarding unprepared tutors have disappeared.
A week earlier than for the students, an individualized assignment was also generated for the
tutors, which they also had to generate the answers for, and for which they also were
marked. This forced the tutors to prepare themselves for the tutorials.

A final advantage of the system was that it led to a strongly improved performance of the
students in the final exam, even though this was more difficult than in the previous years. For
the students enrolled in CIV3204 in 2019, 107 out of the 475 did not pass the unit. In 2020,
after the implementation of the system, 40 out of the 350 students enrolled in CIV3204 failed
the unit. The failure rate thus decreased from 22% to 11%. One explanation, which is
suggested by the answers to the SETU questions, is that the individualization of the
assignments has forced the students to do them, and consequentially they were better
prepared for the exam.

In response to the students’ comments, an improvement to the GUI’s has been made.
These are now written in html, and the students can activate them by double-clicking, upon
which the GUI’s appear in the browser of their choice. This eliminates the need to install
python and type in the command line interface.

Conclusions/Recommendations/Summary
The greatest surprise from the study was that the students were very positive about the large
number of assignments and the automated marking. The students suggested to improve the
python-based Graphical User Interface system, which we have now solved using html-based
GUI’s. The system improved the students’ learning through more practice and feedback,
evidenced by their achievement in the exam. Based on the positive outcome, we suggest
that automated marking should be further developed and implemented in the STEM
disciplines.

References
Aldriye, H., A. Alkhalaf, and M. Alkhalaf (2019), Automated grading systems for programming

assignments: A literature review, International Journal of Advanced Computer Science and
Applications, 10(3), 215-221, doi:10.14569/IJACSA.2019.0100328.

Barana, A., and M. Marchisio (2016), Ten Good Reasons to Adopt an Automated

Formative Assessment Model for Learning and Teaching Mathematics and Scientific Disciplines,
Procedia - Social and Behavioral Sciences, 228 (June), 608-613,
doi:10.1016/j.sbspro.2016.07.093.

Blikstein, P., M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller (2014), Programming
Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming,
Journal of the Learning Sciences, 23(4), 561-599, doi:10.1080/10508406.2014.954750.

Blumenstein, M., S. Green, S. Fogelman, A. Nguyen, and V. Muthukkumarasamy (2008),
Performance analysis of GAME: A generic automated marking environment, Computers and
Education, 50(4), 1203-1216, doi:10.1016/j.compedu.2006.11.006.

Carberry, T. P., P. S. Lukeman, and D. J. Covell (2019), Bringing Nuance to Automated Exam and
Classroom Response System Grading: A Tool for Rapid, Flexible, and Scalable Partial-Credit
Scoring, Journal of Chemical Education, 96(8), 1767-1772, doi:10.1021/acs.jchemed.8b01004.

Chandra, B., M. Joseph, B. Radhakrishnan, S. Acharya, and S.Sudarshan (2015), Partial marking for
automated grading of SQL queries, Proceedings of the VLDB Endowment, 9(13), 1541-1544,
doi:10.14778/3007263.3007304.

Cheang, B., A. Kurnia, A. Lim, and W. C. Oon (2003), On automated grading of programming
assignments in an academic institution, Computers and Education, 41(2), 121-131,
doi:10.1016/S0360-1315(03)00030-7.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

Conejo, R., B. Barros, and M. F. Bertoa (2019), Automated Assessment of Complex Programming
Tasks Using SIETTE, IEEE Transactions on Learning Technologies, 12(4), 470-484,
doi:10.1109/TLT.2018.2876249.

Cinar, A., E. Ince, M. Gezer, and O. Yilmaz (2020), Machine learning algorithm for grading open-
ended physics questions in Turkish, Education and Information Technologies, doi:10.1007/s10639-
020-10128-0.

Donnelly, D. F., J. M. Vitale, and M. C. Linn (2015), Automated Guidance for Thermodynamics
Essays: Critiquing Versus Revisiting, Journal of Science Education and Technology, 24(6), 861-
874, doi:10.1007/s10956-015-9569-1.

Fleming, W., K. Redish, and W. Smyth (1988), Comparison of manual and automated marking of
student programs, Information and Software Technology, 30(9), 547-552, doi:10.1016/0950-
5849(88)90133-4.

Gierl, M. J., S. Latifi, H. Lai, A. P. Boulais, and A. de Champlain (2014), Automated essay scoring and
the future of educational assessment in medical educa tion, Medical Education, 48(10), 950-962,
doi:10.1111/medu.12517.

J. Kovacic, Z., and J. Green (2012), Automatic Grading of Spreadsheet and Database Skills, Journal
of Information Technology Education: Innovations in Practice, 11, 053-070, doi:10.28945/1562.

Jackson, D. (1996), A software system for grading student computer programs, Computers and
Education, 27(3-4), 171-180, doi:10.1016/s0360-1315(96)00025-5.

Janicic, M. V., and F. Maric (2020), Regression verification for automated evalu- ation of students
programs, Computer Science and Information Systems, 17(1), 205-227,
doi:10.2298/CSIS181220019V.

Kiraly, S., N. Karoly, and O. Hornyak (2017), Some aspects of grading Java code submissions in
MOOCs, Research in Learning Technology, 25(1063519), 1-16.

Lee, H. S., A. Pallant, S. Pryputniewicz, T. Lord, M. Mulholland, and O. L. Liu (2019), Automated text
scoring and real-time adjustable feedback: Supporting revision of scientific arguments involving
uncertainty, Science Education, 103(3), 590-622, doi:10.1002/sce.21504.

Liu, X. (2013), A new automated grading approach for computer programming, Computer Applications
in Engineering Education, 21(3), 484-490, doi:10.1002/cae.20494.

Ma, Z. H., W. Y. Hwang, and T. K. Shih (2020), Effects of a peer tutor recommender system (PTRS)
with machine learning and automated assessment on vocational high school students’ computer
application operating skills, Journal of Computers in Education, (300), doi:10.1007/s40692-020-
00162-9.

Manoharan, S. (2017), Personalized assessment as a means to mitigate plagiarism, IEEE
Transactions on Education, 60(2), 112-119, doi:10.1109/TE.2016.2604210.

Menk, K. B., and S. Malone (2015), Creating a cheat-proof testing and learning environment: A unique
testing opportunity for each student, Advances in Accounting Education: Teaching and Curriculum
Innovations, 16, 133-161, doi:10.1108/S1085-462220150000016007.

Munoz De La Pena, A., D. Gonzaez-Gomez, D. Munoz De La Pena, F. Gomez-Estern, and M.
Sanchez Sequedo (2013), Automatic web-based grading system: Application in an advanced
instrumental analysis chemistry laboratory, Journal of Chemical Education, 90(3), 308-314,
doi:10.1021/ed3000815.

Naude, K. A., J. H. Greyling, and D. Vogts (2010), Marking student programs using graph similarity,
Computers and Education, 54(2), 545-561, doi: 10.1016/j.compedu.2009.09.005.

Reilly, E. D., R. E. Stafford, K. M. Williams, and S. B. Corliss (2014), Evaluating the validity and
applicability of automated essay scoring in two massive open online courses, International Review
of Research in Open and Distance Learning,15(5), 83-98, doi:10.19173/irrodl.v15i5.1857.

Reilly, E. D., K. M. Williams, R. E. Stafford, S. B. Corliss, J. C. Walkow, and D. K. Kidwell (2016),
Global times call for global measures: Investigating automated essay scoring in linguistically-
diverse MOOCs, Online Learning Journal, 20(2), doi:10.24059/olj.v20i2.638.

Stockburger, D. W. (1999), Automated grading of homework assignments and tests in introductory
and intermediate statistics courses using active server pages, Behavior Research Methods,
Instruments, and Computers, 31(2), 252-262, doi:10.3758/BF03207717.

Vista, A., E. Care, and P. Griffin (2015), A new approach towards marking large-scale complex
assessments: Developing a distributed marking system that uses an automatically scaffolding and
rubric-targeted interface for guided peer-review, Assessing Writing, 24, 1-15,
doi:10.1016/j.asw.2014.11.001.

Vitale, J. M., K. Lai, and M. C. Linn (2015), Taking advantage of automated assessment of student-
constructed graphs in science, Journal of Research in Science Teaching, 52(10), 1426-1450,
doi:10.1002/tea.21241.

Vujosevic-Janicic, M., M. Nikolic, D. Tocic, and V. Kuncak (2013), Software verification and graph
similarity for automated evaluation of students' assignments, Information and Software Technology,
55(6), 1004-1016, doi: 10.1016/j.infsof.2012.12.005.

Wang, H. C., C. Y. Chang, and T. Y. Li (2008), Assessing creative problem-solving with automated
text grading, Computers and Education, 51(4), 1450-1466, doi:10.1016/j.compedu.2008.01.006.

Zhai, X., Y. Yin, J. W. Pellegrino, K. C. Haudek, and L. Shi (2020), Applying machine learning in
science assessment: a systematic review, Studies in Science Education, 56(1), 111-151,
doi:10.1080/03057267.2020.1735757.

Zhang, Y., C. Lin, and M. Chi (2020), Going deeper: Automatic short-answer grading by combining
student and question models, User Modeling and User-Adapted Interaction, 30(1), 51-80,
doi:10.1007/s11257-019-09251-6.

Zhu, M., O. L. Liu, and H. S. Lee (2020), The effect of automated eedback on revision behavior and
learning gains in formative assessment of scientific argument writing, Computers and Education,
143(September 2018), 103,668, doi:10.1016/j.compedu.2019.103668.

Zupanc, K., and Z. Bosnic (2017), Automated essay evaluation with semantic analysis, Knowledge-
Based Systems, 120, 118-132, doi:10.1016/j.knosys.2017.01.006.

KEYWORDS

Automated marking, individualized assessment, statistics

Acknowledgements

We wish to thank the Department of Civil Engineering at Monash University for providing the
funding for this project.

Copyright statement

Copyright © 2021 Ashkan Shokri, Veronica Halupka, Michael Crocco, and Valentijn Pauwels: The authors assign to the
Research in Engineering Education Network (REEN) and the Australasian Association for Engineering Education (AAEE) and
educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction
provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive
licence to REEN and AAEE to publish this document in full on the World Wide Web (prime sites and mirrors), on Memory
Sticks, and in printed form within the REEN AAEE 2021 proceedings. Any other usage is prohibited without the express
permission of the authors

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Ashkan Shokri, Veronica
Halupka, Michael Crocco, and Valentijn Pauwels, 2021

