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Abstract 

CONTEXT  

Improving student academic success in higher education courses is a central objective for 
educational institutions. Hence, student academic failure and dropout rates are of significant 
concern. Recent studies link academic success to student self-efficacy, academic 
performance, social environment, demographics, and performance expectations of students. 
One of the strategies to evaluate academic success is through risk analysis: a set of 
methods to analyze, understand, and predict student outcomes before enrolling in specific 
majors or challenging college courses.  

PURPOSE OR GOAL  

Contributing to the goal of academic prediction, the purpose of this research is to develop a 
simple methodology to estimate fragility curves for students entering an engineering course. 
A fragility function describes the probability of succeeding in a course, given the students’ 
GPA. The implementation of the proposed methodology facilitates the generation of models 
and decision-making according to the estimation of the probability of a student surpassing or 
not a specific grade for a course. 

APPROACH OR METHODOLOGY/METHODS  

The data used to generate fragility functions comes from a database of engineering courses 
collected over several years at a particular university. The data includes Course Grade of 
interest (CG) after taking a class, and the Grade Point Average (GPA) of the students before 
taking it. The methodology estimates the probability of surpassing a specific performance 
level in a course implementing the idea of fragility functions used in the earthquake 
engineering field but adapted to engineering education. For example, the data can be 
organized to developed cumulative distribution functions to represent the probability of 
surpassing or failing a specific course given the students' GPA. 

ACTUAL OR ANTICIPATED OUTCOMES  

The resulting fragility curves have the potential to achieve two goals: (i) assessing the 
population at risk for a course to take actions for improving student success rates, and (ii) 
assessing a course difficulty based on the fragility function parameters. A practical case in 
which fragility curves are helpful is to compare the difficulty of two or more engineering 
courses, detecting subjects in which students tend to have more challenges to succeed.  

CONCLUSIONS/RECOMMENDATIONS/SUMMARY  

In the literature, there are research studies that have focused on predicting student failure or 
dropping out in the first academic year or models to predict academic performance in the last 
semester of the program; however, this research focused on predicting academic success in 
any course of the program, provided that the GPA information is available. The procedure 
used to generate fragility curves used in seismic engineering is applicable to generate risk 
curves that estimate the probability of academic success in engineering courses. 
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Introduction 

Improving student academic success in higher education has been an important objective for 
academic institutions over the years. Student academic failure and dropout rates in 
engineering are a significant concern in several countries, including Colombia (Casillas, 
Robbins, Allen, Kuo, Hanson, & Schmeiser, 2012; Lucio, Hunt, & Bornovalova, 2012; Vieira, 
Aguas, Goldstein, Purzer & Magana, 2016). In Colombia, engineering dropout rates are more 
than 50%. Students drop engineering programs for several reasons, but academic 
performance is one of the main predictors at all educational levels (Casillas et al., 2012). 
Past academic performance and student demographics are some of the main predictors of 
academic success (Shahiri, Husain, Rashid, 2015; Alyahyan & Düştegör, 2020). Predicting 
student failure becomes relevant for institutions to develop procedures to support 
engineering students and avoid student dropout (Knight, Carlson & Sullivan, 2007).  

Several approaches have been used to predict student success/failure rates. For instance, 
Lucio and colleagues (2012) used the receiver operating characteristic (ROC) curves to 
identify the optimum number of risk factors. Vandamme and colleagues (2007) implemented 
mathematical techniques (decision tree; neural networks and linear discriminant analysis) to 
predict the probability of failing or dropping out in their first academic year. Educational data 
mining (EDM) methods have also been used to predict students' performance. EDM methods 
extract relevant information from a large educational database to predict or analyze students' 
performance (Angeline, 2013; Shahiri et al., 2015). Risk analysis is another important 
process that has been used to analyze, understand, or predict students' outcomes before 
enrolling in specific majors or particularly difficult college courses (Bernacki et al. 2020; 
Alipio, 2020; Esmat & Pitts, 2020; Wilson & low, 2014; Dekker et al., 2009; Ohland et al., 
2011; Marbouti et al., 2016; Belfield & Crosta, 2012). The importance of predicting student 
risk failure lies in the possibility of improving the teaching-learning process (Shahiri et al., 
2015; Alyahyan & Düştegör, 2020), allowing teachers to make informed instructional 
decisions. This process may also minimize student repeating attempts at courses and 
improve completion rates through timely actions (Esmat & Pitts, 2020).  

While all these different methods may help predict student failure or academic success in 
undergraduate programs, our approach will focus on predicting student success in individual 
courses. We argue that institutions may benefit from lower student dropout rates by 
improving the course-specific success rate at the program level. This study proposes a 
model to predict student success in specific undergraduate courses using their past grade 
point average (GPA). The model is based on fragility functions used in the earthquake 
engineering field to estimate the chance of structural damage given the ground-motion 
intensity. This approach also allows comparing two different courses and may help higher 
education institutions to make informed decisions to support student learning. 

Theoretical Framework 

In earthquake engineering, fragility functions are useful to describe the effect of earthquakes 
in a building. Given a particular building, a fragility function helps to estimate the probability 
of exceeding a specific limit state of an engineering demand parameter (EDP) as a function 
of ground motion intensity measure (IM). For example, the limit state of an EDP could be an 
acceleration threshold at the roof of a building which can vary according to different values of 
IM. Note, this is only a statistical data organization procedure that may be expanded to other 
fields. In this sense, this paper adapts this organization procedure to engineering courses 
when generating fragility functions to estimate the chance of obtaining a certain course grade 
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(CG) as a function of the grade point average (GPA) of the students before taking such 
course (Figure 1). 

 

Figure 1: Equivalence of concepts from earthquake engineering to engineering courses 

Baker (2015) presents two methods to obtain the data for estimating fragility curves, both 
fulfilling the need of finding correlating pairs of a cause and a consequence. Fragility curves 
are defined as a cumulative distribution function (CDF), which depends on the statistical 
distribution of the data treated. Typically, the lognormal distribution is used to elaborate these 
functions, as is shown in Equation (1) 

𝑷(𝑪𝑮 > 𝒄𝒈|𝑮𝑷𝑨 = 𝒙) = 𝚽(
𝐥𝐧 (

𝒙

𝜽
)

𝜷
) (1) 

where 𝑃(𝐶𝐺 > 𝑐𝑔|𝐺𝑃𝐴 = 𝑥) is the probability of obtaining a course grade greater than cg, 

given a test value of 𝐺𝑃𝐴 = 𝑥; and Φ() is the standard normal cumulative distribution 
function. According to Baker (2015), logistic regression is also used to describe fragility 
functions. These are special cases of generalized linear models (GLMs) and will be the 
preferred option used in this paper. All GLMs have three components: the random 
component, the systematic component, and the link function. According to Agresti (2012): 

• Random component: identifies the response variable Y (i.e., a consequence) and 
chooses a probability distribution for it. When the Y observations are binary, as is the 
case of success or failure, then a binomial distribution must be assumed for Y. 

• System component: specifies the independent (predictor or explanatory) variable(s) 
(i.e., the cause). These variables get in as predictors and the linear combination of 
them is known as a linear predictor. 

𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘 

• Link function: Specifies a function of the expected value of Y, this is, 𝐸(𝑌) = 𝜇. 
When 𝜇 takes values between 0 and 1, then is appropriate to use a logit link function, 
this is, 𝑔(𝜇) = log[𝜇/(1 − 𝜇) ]. When a GLM has a logit link function, then is called a 
logistic regression model, which is the case for this study. 

The distribution of Y is represented by the probability 𝑃(𝑌 = 1) = 𝜋 of success, 𝑃(𝑌 = 0) =
1 − 𝜋, and 𝐸(𝑌) = 𝜋. The binomial distribution of Y follows Equation (2).  

𝑷(𝒚) = (
𝒏
𝒚)𝝅(𝒙)

𝒚(𝟏 − 𝝅(𝒙))𝒏−𝒚 (2) 

where n = 1 when we work with binary observations, and 𝜋(𝑥) represents the conditional 
mean of Y given the independent variable x according to Equation (3). The corresponding 
logistic regression function is presented in Equation (4), which implies that 𝜋(𝑥) increase or 
decease as an s-shaped function of the independent variable x. 

𝝅(𝒙) =
𝒆𝜷𝒐+𝜷𝟏𝒙

𝟏 + 𝒆𝜷𝟎+𝜷𝟏𝒙
 (3) 

𝒍𝒐𝒈𝒊𝒕[𝝅(𝒙)] = 𝐥𝐨𝐠 (
𝝅(𝒙)

𝟏 − 𝝅(𝒙)
) = 𝜷𝟎 + 𝜷𝟏𝒙 (4) 

In this Logistic regression, or logit model, the parameter 𝛽1 indicates if the curve increase 
(𝛽1 > 0) or decrease (𝛽1 < 0), and its magnitude defines how fast increase or decrease, that 

is, the slope. When 𝜋(𝑥) = 0.5, x corresponds to the median effective level (EL50) which 
represents the probability for success equals to 50% and can be calculated as 𝑥 = −𝛽0/𝛽1. 

Engineering Demand Parameter (EDP)

Intensity Measure (IM)

Earthquake engineering Engineering courses

Grade Point Average (GPA)

Course Grade (CG)
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According to Hosmer (2013), there are two significant reasons for selecting the logistic 
distribution. The first one is that logistic regression is an extremely flexible and easily used 
function, mathematical speaking. The second one is that model parameters provide “the 
basis for clinically meaningful estimates of effect”. 

The maximum likelihood method is used to estimate the parameters of the function for this 
model (Equation (5)): 

𝒍(𝜷) =∏𝝅(𝒙𝒊)
𝒚𝒊 ∗ (𝟏 − 𝝅(𝒙𝒊))

𝟏−𝒚𝒊

𝒏

𝒊=𝟏

 (5) 

where 𝛽 = (𝛽0, 𝛽1). Taking advantage of the logarithm’s properties, then Equation (5) can be 

transformed to Equation (6). 

𝑳(𝜷) = 𝐥𝐧[𝒍(𝜷)] =∑{𝒚𝒊 𝐥𝐧[𝝅(𝒙𝒊)] + (𝟏 − 𝒚𝒊) 𝐥𝐧[𝟏 − 𝝅(𝒙𝒊)]}

𝒏

𝒊=𝟏

 (6) 

Procedures for Estimating the Fragility Curves 

In this section, we present the steps to estimate the risk of failure given the GPA of the 
student before taking a specific course. To explain the procedure, we use the data from a 
mid-sized private university in Colombia. The sample course is Calculus II which has 6,709 
data points collected between 2008 and 2017. In the next section, the courses Physics I and 
Statistics are included to compare the three courses.  

1. Collect GPA versus CG pairs for the concerned course 
Collect (GPA, CG) pairs, where the GPA is that of the students before taking the 
course of interest. Additional metadata may be included depending on the purpose of 
the fragility curve. For example, if the idea is to compare the evolution of a course, a 
third parameter can be the period in which the course was taken (e.g., semester, 
year). On the other hand, if the purpose is to compare the success in different 
educational institutions, it will be important to separate the information according to its 
origin. Note that the use of only one input variable (i.e., GPA) is a limitation of this 
methodology. 
The scatter plot in Figure 2 helps visualize the data distribution. For the case study 
presented here, good-standing students at the college of engineering must have a 
GPA ≥ 3.3; hence the X-axis range starts there. The course grade scale goes from 0 
to 5, and the minimum approving course grade is 3.0. 
 

 

Figure 2: Scatter plot of GPA and CG of the course of Calculus II 

 

2. Select GPA level of interest and bin the data 

dropouts

Pass

No pass

CG threshold
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Define GPA bins from the minimum applicable GPA to the maximum GPA, depending 
on the institution's standards. Here, we use the range 3.3 ≤ GPA ≤ 5.0, and the bins 
increments of 0.1. When defining the bin size, one must consider the amount of data 
available. Fewer data points require larger bins. Figure 3 shows a bubble plot of CG 
versus GPA bins. Note, the size of each bubble indicates the concentrations of data 
around specific pairs of (GPA, CG).  
In this stage, also define the CG threshold, which depends on the purpose of the 
fragility curve. For the case study, CG = 3.0 is selected as a threshold because this is 
the grade from which a student approves or not a course in the institution under 
study. However, any other threshold can be selected. For example, in the case study, 
the so-called distinguished students have a GPA ≥ 3.8, so a CG = 3.8 could be 
another possible threshold to analyze. 
 

 

Figure 3: Bubble plot of binned GPA and CG of the course of Calculus II 

 
3. Estimate logit coefficients and standard deviation 

Once a CG threshold is defined, it is necessary to create a binary vector with the 
same size as the amount of data (i.e., of students evaluated). For each student, this 
vector has values of 1 when the CG ≥ CGthreshold, and 0 otherwise. The fragility curves 
are estimated by a generalized linear model (GLM) using binomial probability 
distribution and logit as the link function in MATLAB (see code in Appendix). The 
inputs of the function are a vector collecting the GPA of the students, and the 
corresponding binary vector explained above. The code estimates the logit coefficient 
of the function. 
 

4. Computes predicted values of GLM and plots fragility curves 
Knowing the parameters 𝛽0 and 𝛽1, we can use Equation (3) to estimates the 
probability of surpassing the CGthreshold for each GPA; hence, the fragility curve is 
estimated as 1 − 𝜋(𝐺𝑃𝐴 = 𝑥). Figure 4 shows two fragility curves: the first one 
evaluates the probability of failing the course of Calculus II, while the second one 
evaluates the probability of obtaining CG < 3.8 for the same course. These fragility 
curves must be interpreted in this way: a student with a GPA = 3.6 has a probability of 
22% of not passing the course, while the same student has a probability of 75% of 
obtaining a CG < 3.8. The complement to these probabilities offers another 
perspective from the same data. Figure 4 also shows the binary vector plotted 
against GPA. It is worth mentioning that observations showed in this figure are not 
binned GPA, so they overlap. 
 

Sizes
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Figure 4: Fragility function of the course of Calculus II for a probability of CG < 3.0 

Application case 

An application case of these fragility curves compares the estimated academic performance 
that a student with a specific GPA would obtain in each course of interest. Figure 5 presents 
the fragility curves of three courses: Calculus II, Physics I, and Statistics. Figure 5a shows 
the probability of failing each course given the student's GPA. This figure shows that 
Statistics is the most difficult subject among these three, and for Calculus II the students 
show a better performance. For example, a student with a GPA = 3.4 has a 40% chance of 
failing the course of Calculus II, while for Physics I and Statistics, this student has a 50% 
chance, approximately. Figure 5b presents a CG threshold of 4.0 and depicts a different 
behavior in comparison with Figure 5a. Note that both, Physics I and Statistics cross at an 
about GPA = 4.3, which also coincides with the 50th percentile. This indicates that, in an 
average sense, for both courses, a GPA of at least 4.3 is required to surpass the 4.0 grading.  

 

Figure 5. Fragility curves of the course of Calculus II, Physics I, and Statistics comparing: (a) 
the probability of not passing each course; (b) the probability of obtaining a CG < 4.0 

Two important parameters for each curve are shown in Table 1. The first parameter is 𝛽1 and 
its magnitude shows the rate at which the curve is decreasing, that is, the slope of the curve. 
For instance, Figure 5b shows that the curve of Physics I is stepper than Statistics and 
Calculus II as confirmed by the values of 𝛽1 in Table 1. Note that Figure 5 shows plots for 

1 − 𝜋, hence, the slopes are negative. A flatter slope indicates the data is more scattered. A 

𝐶𝐺  3.0    = 1

𝐶𝐺 < 3.0    = 0

(a) (b)
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second more important parameter is 𝐸𝐿50 which indicates the 50th percentile of the GPA 
data. As commented previously, one can use the  𝐸𝐿50 to directly compare the difficulty of 
each course on an average sense, as it defines the overall horizontal position of the curves 
along the X-axis. For example, from the 𝐶𝐺𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  =  3.0 data in Table 1, Statistics with the 

larger 𝐸𝐿50 value indicates that there is at least a 50% chance of failing the course for 
students of GPA equal to or less than 3.42. This GPA threshold is smaller for the other two 
courses; hence, students with lower GPAs are more likely to pass it. 

Table 1. Parameters of the fragility curves for different CG of the course of Calculus II, Physics 
I, and Statistics 

Parameter 
CGthreshold = 3.0 CGthreshold = 4.0 

Calculus II Physics I Statistics Calculus II Physics I Statistics 

𝛽0 -11.61 -11.85 -11.30 -16.70 -19.59 -16.91 

𝛽1 3.55 3.51 3.30 4.15 4.53 3.91 

𝐸𝐿50
= −𝛽𝑜/𝛽1 

3.27 3.38 3.42 4.02 4.32 4.32 

As was mentioned before, this model may be used for other application cases. Students' 
academic performance in course offerings may be useful to identify how different strategies 
have contributed (or not) to student success. Likewise, this model may also be helpful to 
compare the same courses at various institutions, or over the years. 

Conclusions 

A significant concern in higher education is to enhance academic success in engineering 
programs. This paper contributes towards this goal by describing a methodology that enables 
instructors and decision-makers to predict students' future performance in a specific course 
from historical past performance in an objective manner. The proposed methodology uses 
fragility functions with historical course grades and corresponding grade point average (GPA) 
before taking the course. Once the fragility curves are created, it is possible to predict the 
probability of exceeding a specific CG given the GPA for a particular student.  

Fragility functions were elaborated using a generalized linear model (GLM) with the binomial 
logistic method. Once fragility functions are created for the courses of interest, it becomes a 
functional tool to assess the population of risk according to their GPA. When this population 
is detected, it is possible to create mitigation actions to improve their academic performance. 

One application case was presented, which consisted of comparing three courses: Calculus 
II, Physics I, and Statistics. Knowing the fragility curves parameters of each course is 
possible to compare the difficulty between one and others depending on the GPA of students 
and the CG threshold selected. 

While we believe that this model can be helpful to inform instructional decisions, we 
recognize that other factors beyond the GPA may influence student success in a given 
course. We argue against providing students themselves with the outcomes of this model, as 
this may affect their self-efficacy towards the course and the program, and may misinform 
their future decisions. This model may be useful to inform teaching practices and to assess 
the consistency of the course difficulty. 
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Appendix 

MATLAB code 

%% LOGIT - FRAGILITY CURVE 
 
% b: file with 4 columns: 1) ID of the observation, 2) the course grade of each 
observation, 3) GPA of each observation, 4) GPA binned each observation   
 
b = importdata('Calculus_II.txt'); 
values_b = b.data; 
GOI = 3.0; % CG Threshold 
 
GPA = values_b(:,3); 
GPA_binned = values_b(:,4); 
CG = values_b(:,2); 
cond = zeros(length(values_b),1); 
 
for i = 1:length(values_b) 
    if CG(i)>= GOI 
        cond(i) = 1; 
    end 
end 
 
[logitCoef] = glmfit(GPA_binned, [cond],'binomial','logit'); 
 
beta_0 = logitCoef(1); 
beta_1 = logitCoef(2); 
EL_50 = -beta_0/beta_1; 
 
GPA_x = 3.3:0.1:5; 
for i=1:length(GPA_x) 

logitFit_plot(i)=exp(beta_0+beta_1*GPA_x(i))/(1+exp(beta_0+beta_1*GPA_x(i))); 
end 
 
%% Graphics 
plot(GPA, cond, 'ok') 
hold on 
plot(GPA_x,1-logitFit_plot,'-','lineWidth',2,'Color', [0 0 0]); 
hx = xlabel('GPA'); 
hy = ylabel('P(CG < 3.0)’); 
ylim([0 1]); 
axis([3.3 5 0 1]) 
grid on 
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