

Image-to-Code: Assisting Engineering Students in Relating
to OOP

Matthew Eden, Maxwell Benson, Partha Roop, and Nasser Giacaman
University of Auckland, New Zealand

Corresponding Author Email: n.giacaman@auckland.ac.nz

CONTEXT

Object-oriented programming (OOP) concerns itself with modelling real-world entities. Not only is OOP
widely used in the software industry, it is compulsory for undergraduate engineering students in non-
software majors such as computer systems, electrical and electronics, and mechatronics engineering.
The computing education literature has shown that OOP is an important threshold concept for novice
programmers, and that students often face a myriad of difficulties and misconceptions in their learning
of the underlying OOP concepts. Past efforts to alleviate these challenges include the use of
visualisation tools designed to capitalise on visual and kinaesthetic learning. Despite such efforts, it
remains a burden for instructors to create meaningful and concrete examples to help students relate
the concepts to real-world entities.
PURPOSE AND GOALS

The purpose of this study is to reduce the burden on instructors when creating OOP code examples
for students. In turn, by making it easier to generate such meaningful code snippets, it is hoped that
students will be able to better-relate the OOP concepts to their world. The goals of this study are
twofold: (i) explore the feasibility of developing a tool that automatically generates code snippets of
skeleton classes, purely from a single input image, and (ii) understand the pedagogical value that such
a tool provides to students as they are being introduced to OOP concepts.
APPROACH OR METHODOLOGY/METHODS

The approach included the development of a tool (dubbed Image-to-Code) employing machine
learning technologies to automatically generate code from images. This includes the ability to classify
images, obtain a description of that classified object, and parse that description to extract attributes of
the object for use in a code template. In order to evaluate the pedagogical value of such a tool, an
online learning activity was completed by 294 students in a second-year programming course for
engineering students. The study included comparisons of student agreements with Image-to-Code,
impact on learner confidence regarding OOP concepts, time-to-completion, and reported student
satisfaction. The analysis is both quantitative (using statistical techniques) and qualitative (using
thematic analysis).
ACTUAL OUTCOMES

There are a few key takeaways from this study. The most important is that the online learning activity
improved self-reported confidence in students, and their understanding of how to model key OOP
aspects of real-world objects. This is evidenced by the reported student confidence before and after
completing the online learning activity, as well as the dominant theme from the open-ended responses
that students found the activity effective. In terms of the performance of the Image-to-Code tool, the
results highlight that more work is required to improve the quality of the automatically-generated
words. In particular, the generation of class names and parent class names were done well, but the
quality of member fields and methods need to be improved.
CONCLUSIONS

The experiences of this preliminary work opens vast opportunities for the computing education
community to build on, particularly in the development of tools to help engineering students appreciate
the relevance and application of fundamental OOP concepts. The Image-to-Code tool, along with the
associated online activity, were highly valued by students. To the best of our knowledge, we have not
seen such an approach in the literature – and we attribute this to the novelty of the underlying machine
learning technologies we are employing. We recommend expanding this study to investigate further
opportunities to improve the tool’s quality and its impact on learning for engineering students.
KEYWORDS

Object-oriented programming, image classification, natural language processing.

Introduction

For the novice computing student, there are several challenging concepts they need to come
to terms with in order to progress in the field (Dale, 2006). Of these concepts, there are a few
well-known threshold concepts, such as Object-Oriented Programming (OOP). (Boustedt, et
al., 2007) (Rountree & Rountree, 2009) (Sanders, et al., 2012) (Eckerdal, et al., 2006). To
combat this, computing education instructors have employed a variety of methodologies to
teach students OOP, including the creation of various tools to abstract concepts away from
implementation in any one programming language (Jimenez-Diaz, Gonzalez-Calero, &
Gomez-Albarran, 2012) (Yan, 2009). Such tools share a common approach: they emphasise
the connected nature of objects and ground abstract concepts through the use of real-world
examples. However, to create examples that relate to the real world is often difficult and
time-consuming.

Related Work

Balasundaram and Ramadoss (2006) developed a tool to help students practice developing
object-oriented designs from specifications, with a particular focus on collaborative learning.
They found that working together helped students to perform better on this task and learn in
general. This task has similarities to the process automated by Image-to-Code in generating
class skeletons from natural language, and some of the specific challenges involved for
humans are detailed. Li and Xu (2010) provide a worked example showing a process of
teaching object-oriented teaching through the eight-queens puzzle, with the main takeaway
being the concept of object-oriented thinking as a distinct way of viewing a problem, as
opposed to simply a collection of disconnected concepts and programming syntax.

Bagert and Calloni (1997) discuss the development of an icon-based programming tool
BACCII, shown to improve learning outcomes of novice programmers, which suggests that
visual analogies can help students to learn OOP. Jimenez-Diaz et al. (2012) discuss their
tool ViRPlay, “a 3D role play virtual environment for teaching object-oriented design”. Each
student portrays a class, is given a ‘CRC card’ to represent the classes' responsibilities and
dependencies, then made to act out their role in various scenarios. An evaluation of the tool
was performed, showing that it improved grades, and that students and instructors both
found it a useful learning/teaching tool. Among many things, the timing of teaching OOP itself
presents a dilemma for instructors (Pedroni & Meyer, 2010). CS1 has the drawbacks of
students not having yet mastered dependency concepts, while CS2 has the drawback of a
‘paradigm shift’ (Adams, 1996). Our work is therefore partly inspired by the arguments made
by Adams, of enabling an intermediate approach that helps students identify objects and
their operations early on.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

Figure 1: Design of the Image-to-Code study was comprised of two OOP activity
sections, with 5-point Likert scale confidence measures in between. Each

student was presented with three randomly selected images in each section.

Image-to-Code Tool

Here we introduce Image-to-Code, a tool designed to create simple OOP code snippets that
will help students appreciate the object-oriented nature of OOP in relation to real-world
objects. The tool workflow takes in an image, leverages APIs to obtain information about the
image content and uses this information to construct a class skeleton in C++, Java and
Python. This approach was selected because it is geared towards making it easy for
instructors and students to generate compilable code, and to do so simply from images.
While other approaches are possible, they would have involved more effort from instructors
and therefore run counter to the intent of this research. Figure 2 illustrates the results of
running this tool on a given image.

Implementation

Image-to-Code was written in Python 3, utilising the Google Vision API (Google, 2020) for
the classification of input images, and a third-party Wikipedia API (Goldsmith, 2014) to
scrape Wikipedia articles for content. The spaCy NLP framework (Explosion, 2020) is used
to generate dependency graphs from natural language, and NLTK (Natural Language Toolkit
- NLTK 3.5 documentation, 2020) is used to obtain part-of-speech statistics for a particular
word in a large corpus (specifically, the Brown corpus).

Methodology

Figure 1 illustrates the evaluation design, a survey-based activity presented to students
enrolled in a CS2-level course. This activity was aimed to challenge students' understanding
of OOP concepts near to the time they were first introduced to them, as well as assisting in
evaluation of the Image-to-Code tool. It was comprised of two main sections, each consisting
of three randomly-selected images chosen out of a pool of ten images. Although all images
had an equal chance of appearing in either section, an image would not appear more than
once across both sections for any given student. In addition to these two core sections of the
activity, students were also asked to rate (using a 5-point Likert scale) their level of

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

Figure 2: An example image with the generated code (C++
header) from the Image-to-Code tool

class Bookcase: public Furniture {

 private:

string books;

string shelves;

 public:

Bookcase(string books, string shelves);

void store();

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell
Benson, Partha Roop, and Nasser Giacaman, 2021

confidence on understanding what is a class name, a parent class name, a field, and a
method. The purpose of these three confidence checks was to gauge how the activity was
contributing to students' self-perceived confidence in understanding the respective OOP
concepts.

Figure 3 (a) shows a screenshot example from one of the images selected to appear in
Section 1 of the activity. It requires students to come up with words on their own for the given
image. For each image presented in this section, students were required to provide:

• One class name,

• One parent class name,

• Two member fields,

• Two methods,

• Two 5-star ratings:
o Level of satisfaction with the words they selected
o Overall quality of the class representing the given image

Figure 3 (b) shows a screenshot example from Section 2. This required the students to
complete the same steps of Section 1, except this time they were only allowed to select
words (using drag-and-drop) from a pre-defined set of words produced by the Image-to-Code
tool. Similar to Section 1, students were asked to rate their satisfaction of the short-listed
words from the pre-defined set, and the overall quality of the class.

(a) Section 2 example(b) Section 1 example

Figure 3: Examples screenshots from Section 1 and Section 2 of
the activities. The activities were web-based, and therefore

accessible on either a computer or mobile device.

Table 1: Average Student Confidence

Evaluation

Of the 300 students that the activity was delivered to, a total of 294 students (98%)
completed the activity in full; demonstrating the simplicity of the activity that would help
support such a high completion rate.

Taking into account the random allocation of images (questions) to students, there were 90
responses per image on average in each of the two sections. The number of optional
feedback submissions given by students at the conclusion of the activity was 87. These
responses were annotated with a tagging tool and themes identified using thematic analysis
(Braun & Clarke, 2006).

NLP Vs Student Agreements

In an attempt to measure some element of quality of the Image-to-Code tool, a comparison is
made between the word choices of students in each section of the activity, and how that
compares to the word choices produced by the Image-to-Code tool. For Section 1, where
students manually created a class description, we are interested in the agreement (or lack
thereof) between the words picked by students and the words generated by the tool; the
results of this comparison are represented in Figure 4. For Section 2, we were interested in
seeing how students categorised the words provided to them, compared to how the tool
intended them to be categorised; the results of this comparison are represented in Figure 5.

A lower level of agreement was seen in Section 1 compared to Section 2, as students were
able to brainstorm their own words. With regard to Figure 4, we see that for most images
Image-to-Code was able to at least choose a class name that students agreed with (with the
exception of the ‘man’ image). For most images, Image-to-Code chose a parent class that

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

OOP Aspects Confidence Average

Beginning Middle End

Class 4.20 4.62 4.67

Parent 4.07 4.60 4.65

Fields 3.81 4.40 4.48

Methods 3.84 4.30 4.40

Figure 4: Average level of agreement
between the Image-to-Code NLP tool and

students (Section 1).

Figure 5: Average level of agreement
between the Image-to-Code NLP tool and

students (Section 2).

students mostly agreed with, but noticeably fewer cases where member fields and methods
were chosen that matched those picked by students.

Reported Satisfaction and Quality of Words

As another measure of quality, we can compare students' satisfaction (across the two
sections) with the selection of words they chose to represent the given images. The
expectation is that one would be able to be ‘more satisfied’ when they are not confined to
selecting from a short list, and we see this in Figure 6. Students reported an overall higher
satisfaction in Section 1 (x̄=4.30) compared to that of Section 2 (x̄=3.67). Using a two-tailed
Mann-Whitney U test, this difference is statistically significant (W=476932, p<0.0001). As a
result of being less satisfied with the selection of words, this also led to students rating their
overall OOP design ‘solutions’ a lower quality in Section 2 (x̄=3.70) compared to that of
Section 1 (x̄=4.23), as demonstrated in Figure 7. Again, this difference is statistically
significant (W=454565, p<0.0001).

Impact on Learner Confidence

The self-reported confidence of students was recorded at three distinct stages during the
activity: at the beginning, in the middle between Sections 1 and 2, and at the end. Students
were queried concerning their confidence relating to class names, parent class names,
member field names and method names, and asked to rate their confidence according to a
5-point Likert scale. Averages (out of a maximum of 5) are shown in Table 1 for each of the
OOP aspects. The one-tailed Wilcoxon signed-rank tests between each of these stages are
shown in Table 2, showing a statistically significant increase in confidence between each
stage for all categories.

Time to Completion on Images

Table 2: Comparison of Student Confidence

Figure 8 and Figure 9 show the distribution of time it took for students to select words
pertaining to various OOP aspects for Section 1 and Section 2 respectively. In each chart,
these are given in ascending order by median time within the respective section. This may
provide us with some insight to possibly infer which images presented a bigger challenge to
students. For example, Figure 8 shows that the median student needed twice the amount of

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

Stage Category p-value W-value

Before Section 1
(beginning)

Class

Parent

Fields

Methods

<0.001

<0.001

<0.001

<0.001

243.0

431.5

899.5

1269.0

After Section 1
(middle)

Class

Parent

Fields

Methods

<0.001

<0.001

<0.001

<0.001

243.0

26430

799.0

1294.5

After Section 2

(end)

Class

Parent

Fields

Methods

0.009

0.011

0.002

0.001

183.0

299.5

667.0

958.5

time for the ‘tree’ image (about 100 seconds) compared to the ‘dog’ image (about 50
seconds). The median time across all the images in Section 1 was 88.4 seconds.

Discussion

Lessons from this Experience

There are a few key takeaways from this study. The most important of which, at least in
terms of what it can mean for instructors, is that the activity improved self-reported
confidence in students' understanding of how to model key OOP aspects of real-world items.
This is evidenced by the reported student confidence before and after completing each
section of the activity, and the theme of finding the activity helpful identified in the open-
ended responses. This shows that there is inherent merit to the exercise of requiring
students to identify class aspects from images of real-world objects.

Even with disregard to the Image-to-Code tool, instructors can use the findings reported here
to inspire students in CS2 courses concerned with introducing OOP. Of particular note, is
that the significant increase in confidence was achieved with relatively little effort (for both
instructors and students), and in itself is a worthy low-stakes assignment to consider.
Considering the simplicity of this exercise, and the benefit to learners, we believe this activity
will be attractive for ‘objects-first’ or ‘objects-early’ programming courses (Pedroni & Meyer,
2010).

Limitations

Although the evaluation was quite positive, there are inevitably some threats to validity.
Particularly, as the activity inherently relies on the responses of students, there is the
possibility that some of the data collected is not completely representative. While the timing
data does show a reasonable level of dedication, there may have been students more
interested in completing the activity as quickly as possible with little regard for the quality of
their solution. The evaluation was conducted on students enrolled in a CS2 course for a
single semester. While the number of students was reasonably large, it is difficult to infer the
impact of the activity more generally. As the timing of the activity was constrained to a single
point of time (when students were introduced to the basics of OOP), we may see different
results if the activity was delivered at a different time in the semester. It is therefore unclear
what the long-term value of this activity is. Similarly, the study did not investigate its learning
impact in terms of timing, such as CS1 versus CS2, ‘objects-first’ versus ‘objects-late’, and
so on.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

Figure 6: Students’ overall reported
satisfaction with the words used in each of

the respective sections.

Figure 7: Students’ overall reported quality of
the OOP ‘solution’ representing the images in

each respective section.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell
Benson, Partha Roop, and Nasser Giacaman, 2021

The Image-to-Code tool itself faces some limitations which affected the quality of the output it
was able to produce. The first of which being it is highly dependent on the Google Vision API
proposing the initial labels for determining what the image pertains to. Although powerful, the
image classification does not always label images as a human might expect, such as
focusing on the clothing a person is wearing rather than the person themselves. The second
of which relates to the use of Wikipedia as a knowledge source. Although the content on
Wikipedia is fairly wide-ranging and comprehensive, there are several cases where the
description simply lacks the key verbs or nouns that a human would associate with that
object due to the academic nature of the page summaries.

Conclusions and Future Work

A tool, dubbed Image-to-Code, was developed as part of an attempt to address the
difficulties faced by instructors in conveying OOP concepts to students. An activity was
created to evaluate this tool, with discussion around the results focussing on the implication
that the completion of said activity is useful for students’ learning. Several much-needed
improvements were identified in regard to the performance of the tool, and the quality of the
output it produces. The key limitations were twofold; one being the classification of images
via Google’s Vision API and the other being the processing of Wikipedia’s descriptions.

Figure 8: Time taken per image (Section 1). Figure 9: Time taken per image (Section 2).

References

Google, 2020, Vision AI | Derive Image Insights via ML | Cloud Vision API

Issues Regarding Threshold Concepts in Computer Science, 2009, Proceedings of the
Eleventh Australasian Conference on Computing Education - Volume 95139-
146AUSAustralian Computer Society, Inc.

Most Difficult Topics in CS1: Results of an Online Survey of Educators, SIGCSE Bull.3849-
53doi10.1145/1138403.1138432

Natural Language Toolkit - NLTK 3.5 documentation, 2020

Object Oriented Analysis Learning Tool using Collaborative Learning, 20067th International
Conference on Information Technology Based Higher Education and Training, 811-
816

Object-Centered Design: A Five-Phase Introduction to Object-Oriented Programming in
CS1–21996, Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on
Computer Science Education, 78–82, New York, NY, USA, Association for
Computing Machinery, doi10.1145/236452.236513

Object-oriented modeling of object-oriented concepts, 2010, International Conference on
Informatics in Secondary Schools-Evolution and Perspectives, 155–169

Putting Threshold Concepts into Context in Computer Science Education, SIGCSE
Bull.38103-107, doi10.1145/1140123.1140154

Role-play virtual worlds for teaching object-oriented design: the ViRPlay development
experience, 2012, Software: Practice and Experience, 42235-253,
doi10.1002/spe.1071

spaCy: Industrial-Strength Natural Language Processing in Python, 2020

Teaching Object-Oriented Programming with Games, 2009, 2009 Sixth International
Conference on Information Technology: New Generations, 969-974

The teaching research on a case of object-oriented programming, 2010, 2010 5th
International Conference on Computer Science Education, 619-621

Threshold Concepts and Threshold Skills in Computing, 2012, Proceedings of the Ninth
Annual International Conference on International Computing Education Research, 23-
30New York, NY, USA, Association for Computing Machinery,
doi10.1145/2361276.2361283

Threshold Concepts in Computer Science: Do They Exist and Are They Useful?, 2007,
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education, 504-508, New York, NY, USA, Association for Computing Machinery,
doi10.1145/1227310.1227482

Using an iconic design tool to teach the object-oriented paradigm, 1997, Proceedings
Frontiers in Education 1997 27th Annual Conference. Teaching and Learning in an
Era of Change, 2861 vol.2-

Using thematic analysis in psychology, Qualitative Research in Psychology, 377-101,
doi10.1191/1478088706qp063oa

wikpedia - PyPI, 2014

Copyright © 2021 Matthew Eden, Maxwell Benson, Partha Roop, and Nasser Giacaman: The authors assign to the Research in
Engineering Education Network (REEN) and the Australasian Association for Engineering Education (AAEE) and educational
non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that
the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to REEN
and AAEE to publish this document in full on the World Wide Web (prime sites and mirrors), on Memory Sticks, and in printed
form within the REEN AAEE 2021 proceedings. Any other usage is prohibited without the express permission of the authors.

Proceedings of AAEE 2021 The University of Western Australia, Perth, Australia, Copyright © Matthew Eden, Maxwell Benson,
Partha Roop, and Nasser Giacaman, 2021

