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ABSTRACT 

CONTEXT  
Training of young mathematicians most often focuses only on mathematical and computational 
methods, without giving students a deeper insight into foundations and context of engineering, 
which is the most common source of the problems they will be tackling. On the other hand, 
engineering students are often taught how to manipulate mathematical formulas without having a 
deeper understanding of the underlying first principles. We believe that there are two reasons for 
such an unhappy state of modern education. (1) In the modern world, we have become super-
specialised, and for one individual to frequently cross the boundaries between fields is not 
generally perceived as a good career move. Education is often reduced to professional training, 
where the aim is not to nourish deeper understanding, but just to acquire sufficient skills to perform 
certain tasks. (2) Specialist textbooks are often replete with discipline specific technical jargon. 
 
PURPOSE OR GOAL 
While one might see this situation as the most cost-effective way to provide industry with workforce 
in the short term, we believe that this approach will eventually erode our ability to make paradigm 
shifts. Perhaps it is time to take a bit of the attitude of the Renaissance and of Enlightenment and 
give our education just a broader, more humanistic focus than just providing a skill set. 
 
APPROACH OR METHODOLOGY/METHODS  
As an example for how this can be accomplished, we offer our presentation of the MUSIC (Multiple 
Signal Classification) frequency estimation algorithm, free of any signal processing jargon, not 
requiring absolutely any knowledge of signal processing but only knowledge of basic linear 
algebra. We believe that such an approach can give a small hint how to bridge the chasm between 
education of mathematicians and education of signal processing engineers.  
 
ACTUAL OR ANTICIPATED OUTCOMES  
We hope it might help young mathematicians appreciate how spectacularly mathematics is applied 
in signal processing and we hope that we might surprise young signal processing engineers that 
one can understand functioning of a key signal processing algorithm relying only on linear algebra. 
 
CONCLUSIONS/RECOMMENDATIONS/SUMMARY  
Engineering education should be more integrated, unifying teaching a good deal of science with 
teaching practical engineering. We must resist the pressures to be “the industry of higher 
education” and be what we used to be – academia, educating not only practitioners of 
sophisticated skills but also independent and creative thinkers and innovators. 
 
KEYWORDS  
Science in engineering, wholistic education, thinkers, innovators  
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Introduction  
Education for Mathematics and Engineering students often have different focus, thus creating two 
different worlds for mathematicians and engineers. Students in Engineering often taught to use and 
manipulate various mathematical formulas with omission of proofs and first principles. Students in 
mathematics often learn underlying first principles, proofs, mathematical and computational 
methods with limited exposure in the context of engineering problems. Engineering textbooks, as a 
rule, try to avoid excursions into mathematical theory as much as possible, while mathematical 
textbooks usually state the relevant equations without placing them into a proper engineering 
context. In fact, we feel that engineers and mathematicians mostly live in two separate worlds, 
often unwilling to cross the boundaries between fields or at least trying to minimise such 
excursions. Examples are abundant: young mathematicians most often learn harmonic analysis 
without even a mention of one of the most spectacular applications of harmonic analysis, namely 
signal processing. On the other hand, young electrical engineers are most often taught the 
Discrete Fourier Transform (DFT) by simply giving them the relevant formulas, without ever telling 
them that the DFT amounts to a change of basis of the underlying signal space. 
As an approach to reduce this disconnect, we explore the possibility of redesigning learning 
resources (such as self-paced asynchronous tutorials), which take a commonly used textbook 
application from Engineering (e.g., a signal processing algorithm from Electrical Engineering) and 
explain the underlying theory and operation, purely based on mathematical details (such as linear 
algebra) without any prior knowledge in signal processing. As an example, we present the MUSIC 
(Multiple Signal Classification) and the root-MUSIC frequency estimation algorithms used in 
standard signal processing, essentially without any reference to traditional signal processing 
concepts and without using any signal processing terminology, thus making these algorithms 
accessible to all students who have studied basic linear algebra, regardless of their field of study. 
Students of signal processing can also benefit from reading this tutorial which presents very clearly 
the underlying mathematical foundations of these algorithms.  
While the rest of this paper takes the form a mathematical tutorial, the main objective of this paper 
is to demonstrate how sophisticated technical algorithms in Engineering can be presented in a 
manner making them accessible to a wide audience, bypassing technical jargon and often 
requiring minimal background preparation. 

Background 
In the modern university, students often specialise very early in their studies, and have little 
substantial engagement with other fields. Henderson and Broadbridge (Henderson & Broadbridge, 
2009) describe the state of engineering mathematics education in Australia, including the 
challenges presented by the diversity of mathematical experience and proficiency in the student 
body, the need to incorporate computing and statistics, and administrative issues such as class 
sizes, assessment and budgets. The content and skills taught in these courses are fundamental to 
the quantitative methods used in various engineering disciplines, as discussed by Maass et al. 
(Maass, Geiger, Romero Ariza, & Goos, 2019) who write that “STEM education in general, and 
mathematics education in particular, can contribute to preparing individuals better for twenty-first 
century challenges”. However, it is well documented that many engineering students struggle in 
these mathematics courses, and they often perceive the content as unnecessarily abstract and of 
little relevance to their engineering studies. This issue has received much attention in the literature, 
such as case studies of the problem-based learning approach by Flegg et al. (Flegg, Mallet, & 
Lupton, 2012) and Bischof et al. (Bischof, Bratschitsch, Casey, & Rubesa, 2007). In addition, 
authors such as Ooi (Ooi, 2007) and Klingbeil et al. (Klingbeil, Mercer, Rattan, Raymer, & 
Reynolds, 2004) write on the matters of what mathematics should be presented to engineering 
students and at what stage of their studies, with the latter advocating for the traditional calculus 
sequence to be delayed in favour of teaching freshmen “only the math they really needed to know 
in order to progress into their sophomore and junior years”. 
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In this paper, we primarily examine the converse problem: that of demonstrating engineering 
applications to mathematics students who may be otherwise more interested in mathematics for its 
own sake. This is much less widely studied, but we believe it to be important in order to both 
diversify the interests and expertise of mathematics students and foster effective interdisciplinary 
collaboration. Many mathematics students are not aware of the power of the material they study in 
solving real-world problems, and here, we demonstrate how they might be introduced to the 
application of linear algebra in signal processing, without any of the jargon from signal processing, 
that might be off-putting to a student without any formal training in electrical engineering.  
The rest of the paper presents our example tutorial of MUSIC algorithm based on linear algebra. 

Example Tutorial on MUSIC Algorithm 
The roots of the MUSIC (Multiple Signal Classification) algorithm for frequency estimation of real 
sinusoids or complex exponentials lie in the early work of Prony (Prony, 1795) and Pisarenko 
(Pisarenko, 1973) which we present here very briefly and in a very simplified manner. 

The methods of Prony and Pisarenko 
Let a signal 𝑠(𝑡) be a linear combination of 𝑛 complex exponentials, i.e., of the form 

𝑠(𝑡) = '𝐴!𝑒"($!%&'!)
)

!*+

. 

(1) 

Here, 𝑗 is the imaginary unit and real numbers 𝐴! , 𝜔! and  𝜑! are the amplitude, the frequency, 
and the phase of the 𝑘"# component, respectively; we assume that 𝐴! > 0 and  −𝜋 < 𝜔! < 𝜋,  
0 < 𝜑! < 2𝜋 for all 1 ≤ 𝑘 ≤ 𝑛. 

We also assume that there exists a sequence of samples 𝑠(𝑡 + 𝑚) of such a signal, taken at 
consecutive instants a unit distance apart, starting with an instant t. Let us now form a linear 
combination of n + 1 such consecutive samples with coefficients 𝑐,	, … , 𝑐) to be specified below. 
Using (1)Error! Reference source not found., after some simplification we obtain 

' 𝑐-𝑠(𝑡 + 𝑚) = ' 𝑐-'𝐴!𝑒"($!(%&-)&'!)
)

!*+

)

-*,

)

-*,

='2' 𝑐-

)

-*,

3𝑒"$!4-5
)

!*+

𝐴!𝑒"($!%&'!) 

(2) 

Consider now a polynomial 𝑃(𝑧) with the leading coefficient 1, given by the product 𝑃(𝑧) =
3𝑧 − 𝑒"$"4…3𝑧 − 𝑒"$#4. Let 𝑐,	, … , 𝑐) be the coefficients of this polynomial, such that 

' 𝑐-

)

-*,

𝑧- =93𝑧 − 𝑒"$!4
)

!*+

. 

Then, since the right-hand side of (2) is of the form ∑ 𝑃3𝑒"$!4)
!*+ 𝐴!𝑒"($!%&'!) 

and since 𝑒"$" , … , 𝑒"$# are the roots of 𝑃(𝑧), the right-hand side (2) of will be equal to zero for all 
real t, and vice versa: since complex exponentials with distinct frequencies are linearly 
independent functions, if the right side of (2) is equal to zero for all real t, then 𝑒"$! must be the 
roots of the polynomial 𝑃(𝑧). Consequently, in order to find the unknown frequencies 𝜔! it is 
enough to find then coefficients 𝑐,	, … , 𝑐) such that for all 𝑡, 

' 𝑐-𝑠(𝑡 + 𝑚) = 0
)

-*,

	 

(3) 
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and then find the roots of the associated algebraic equation ∑ 𝑐-𝑧-)
-*, = 0; such roots lie on the 

unit circle and their arguments are the frequencies sought. 

To find a non-zero vector 𝒄 = 𝑐,	, …	𝑐)	such that 	 

(3) holds for all t, we instantiate 	 

(3) from 𝑡 = 1 to = 𝑛, and if 2𝑛 samples 𝑠(1), 𝑠(2), … 𝑠(2𝑛) of the signal 𝑠(𝑡) are available, we 
obtain a system of linear equations in unknown coefficients 𝑐,	, …	𝑐) of the form 

⎝

⎜
⎛

𝑠(1)
𝑠(2)
⋮

𝑠(𝑛 − 1)
𝑠(𝑛)

𝑠(2)
𝑠(3)
⋮

𝑠(𝑛)
𝑠(𝑛 + 1)

⋯
⋯
⋱
⋯
⋯

𝑠(𝑛 + 1)
𝑠(𝑛 + 2)

⋮
𝑠(2𝑛 − 1)
𝑠(2𝑛) ⎠

⎟
⎞

⎝

⎜
⎛

𝑐,
𝑐+
⋮

𝑐).+
𝑐) ⎠

⎟
⎞
= 𝟎 

(4) 

which, in absence of any noise, we can solve exactly. This is the Prony method, dating back to 
year 1795 [Error! Reference source not found.], which is summarised in Fig. 1. 
 

 
Figure 1: a summary of the Prony method. 

 

In the presence of noise 	 
(3) will not hold exactly; to deal with this problem, we make the system of equations (4) 
overdetermined. Thus, we will assume that we have 𝑁	 > 	2𝑛 equidistant samples of the signal 
𝑠(𝑡). Let us first consider the noise-free case, i.e., assume that 𝑠(𝑡) is as in (1) and let us form the 
following Hankel matrix 𝐌/

0  of size (𝑁	– 	𝑛) × (𝑛	 + 	1): 

𝐌/
0 =

⎝

⎜
⎛

𝑠(1)
𝑠(2)
𝑠(3)
⋮

𝑠(𝑁 − 𝑛)

𝑠(2)
𝑠(3)
𝑠(4)
⋮

𝑠(𝑁 − 𝑛 + 1)

⋯
⋯⋯
⋱
⋯

𝑠(𝑛 + 1)
𝑠(𝑛 + 2)
𝑠(𝑛 + 3)

⋮
𝑠(𝑁) ⎠

⎟
⎞
. 

(5) 

If no noise were present, 	 

(3) would imply that the rank of this matrix is equal to 𝑛. Consequently, if we consider the singular 
value decomposition of this matrix,	𝐌/

0 = UΣ𝐕∗, the diagonal of Σ would consist of 𝑛 + 	1 singular 
values of 𝐌/

0 , out of which there would be 𝑛	non-zero singular values, while the last, which is the 
smallest of the singular values, would be equal to 0. This is true because singular values on the 
diagonal of Σ are always non-negative reals and are usually ordered in a descending order; thus, 
the smallest singular value is the rightmost one on the diagonal of Σ. Matrices 𝐔 and 𝐕 are both 
unitary, i.e., their columns represent a set of orthonormal vectors, called the left (the right) singular 
vectors, respectively. Let	𝐯)&+ be the rightmost singular vector which corresponds to the zero 
singular value of 𝐌/

0 . Then, since 𝐕 is unitary, 𝐕 ∗ 𝐯)&+ = (0,0, … . . ,0,1)2 and, since the last entry on 
the diagonal of 𝛴 is zero, this is easily seen to imply that  𝐌/

0𝐯)&+ = 𝐔𝚺𝐕∗𝐯)&+ = 0. Thus, the 
components of the rightmost singular vector 𝐯)&+ corresponding to the singular value zero are the 
required coefficients of a linear combination of the columns of the matrix 𝐌/

0  which is equal to the 
zero vector. 
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Assume now that we have 𝑁	 > 	2𝑛 equidistant samples 𝑓(1), . . . , 𝑓(𝑁) of a signal 𝑓(𝑡) = 	𝑠(𝑡) +
	𝜈(𝑡) which is a sum of a signal 𝑠(𝑡) as in (1) and noise 𝜈(𝑡). We can still form a Hankel matrix  𝐌/

3 
obtained from matrix  𝐌/

0  by replacing samples of 𝑠(𝑡) by the corresponding noisy samples of 𝑓(𝑡). 

Due to the presence of noise, 𝐌/
3 will generally have a full rank of 𝑛	 + 	1, and thus all singular 

values of 𝐌/
3 will be non-zero. We now take the rightmost singular vector, which corresponds to 

the smallest singular value, as an approximation of the rightmost singular vector if no noise were 
present, and its components 𝐯)&+(𝑚	 + 	1) as approximations of the values of 𝑐- for which 
equation (3) holds.  

As is well known, the right singular vectors of matrix 𝐌/
3 are the eigenvectors of the product matrix 

𝐀/
3 = 3𝐌/

34
∗
𝐌/
3, where 𝐌∗ denotes the conjugate transpose of 𝐌. Note that, in our particular case, 

(1/𝑁)𝐀/
3  is just the auto-covariance matrix of the samples of the noisy signal 𝑓(𝑡). Since matrix 𝐀/

3  
is of size (𝑛	 + 	1) 	×	(𝑛	 + 	1) and since 𝑁 is usually much larger than 𝑛, 𝐀/

3  is of much smaller size 
than 𝐌/

3 . Consequently, finding the eigen decomposition of 𝐀/
3  is a computationally lighter task 

than finding the singular value decomposition of 𝐌/
3. Note that this benefit, however, is often offset 

by the cost of the computation of the matrix product 𝐀/
3 	= 	 3𝐌/

34
∗
𝐌/
3 . In this way we obtain the 

Pisarenko frequency estimation algorithm, which can be summarised as follows and in Fig. 2:  

Compute the matrix 𝐀/
3 = 3𝐌/

34
∗
𝐌/
3 and obtain its eigenvalue decomposition 𝐀/

3 = 	𝐐𝚲𝐐∗. Take the 
rightmost eigenvector 𝐪)&+ which corresponds to the smallest eigenvalue of 𝐀/

3  and solve the 
associated algebraic equation  ∑ 	𝐪)&+)

-*, (𝑚 + 1)𝑧- 	= 	0; the arguments of its 𝑛 roots are taken 
as estimates of the unknown frequencies 𝜔! 	of the complex exponentials which are the 𝑛 
components of the signal 𝑠(𝑡). 
 

 
Figure 2: a summary of the Pisarenko method. 

MUSIC and root-MUSIC Algorithms  
It is well known that the Pisarenko method explained above is not very noise robust and that it 
often has quite a poor performance. The MUSIC algorithm is a generalization of the Pisarenko 
method, which significantly improves its noise robustness; it is essentially an averaging procedure 
of multiple estimates of the frequencies obtained by the Pisarenko method. 

To obtain the MUSIC algorithm, let us again first consider the noise-free case and let 𝐌-
0  be the 

Hankel matrix of shifted consecutive samples with a possibly larger number of columns 𝐾	 ≥ 	𝑛	 +
	1, thus of size (𝑁	 − 	𝐾	 + 	1) 	× 	𝐾, 

𝐌-
0 =	

⎝

⎜
⎛

𝑠(1)
𝑠(2)
𝑠(3)
⋮

𝑠(𝑁 − 𝐾 + 1)

𝑠(2)
𝑠(3)
𝑠(4)
⋮

𝑠(𝑁 − 𝐾 + 2)

⋯
⋯⋯
⋱
⋯

𝑠(𝐾)
𝑠(𝐾 + 1)
𝑠(𝐾 + 2)

⋮
𝑠(𝑁) ⎠

⎟
⎞

 

(6) 

and again consider its singular value decomposition, 𝐌-
0 = UΣ𝐕∗. In absence of noise equation (3) 

again implies that the rank of this matrix would be equal to 𝑛 and thus, only 𝑛 singular values on 
the diagonal of 𝚺	would be non-zero. Just as in the case of the Pisarenko method, this would imply 
that for 𝐾 − 𝑛 right singular vectors 𝐯4, (𝑛	 < 	𝑖		 ≤ 𝐾), which correspond to 𝐾 − 𝑛 zero singular 
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values of 𝐌-
0 , we would have 𝐌-

0 𝐯4 = UΣ𝐕∗𝐯𝒊 = 0. Thus, each of the right singular vectors 𝑣4, 𝑛 <
𝑖 ≤ 𝐾, produces an equation of the form 

' 𝐯4(𝑚 + 1)𝑓(𝑡 + 𝑚) = 0
6.+

-*,

 

that holds for samples 𝑓(𝑡), . . . , 𝑓(𝑡 + 𝐾 − 1) for all integers 1 ≤ 𝑡 ≤ 𝑁 − 𝐾 + 1. Consequently, in the 
absence of any noise, for every 𝑛 < 𝑖 ≤ 𝐾 and all 1 ≤ 𝑡 ≤ 𝑁 − 𝐾 + 1, equation (2) would imply 

' 𝐯4

6.+

-*,

(𝑚 + 1)𝑓(𝑡 + 𝑚) = '𝐴!

)

!*+

𝑒"'! 2' 𝐯4

6.+

-*,

(𝑚 + 1)(𝑒"$!)-5 𝑒"$$% = 0. 

 (7) 

If 𝑁	 − 	𝐾	 + 	1	 ≥ 	𝑛, since the Vandermonde matrix 𝐕	 = 	 f3𝑒"$!4% ∶ 	1	 ≤ 	𝑘, 𝑡	 ≤ 	𝑛i is always 
nonsingular if all 𝜔! are distinct, equation (7) would imply that 𝑒"$! 	must be among the 𝐾	 − 	1 
many roots of each of the polynomials 𝑃4(𝑧), where 

𝑃4(𝑧) = ' 𝐯4(𝑚 + 1)𝑧-,						𝑛
6.+

-*,

< 𝑖 ≤ 𝐾. 

(8) 

Thus, polynomials 𝑃4(𝑧) for all 𝑛	 < 	𝑖	 ≤ 	𝐾 share the same 𝑛 roots	𝑒"$" , … , 𝑒"$# which belong to 
the unit circle, and each of the polynomials 𝑃4(𝑧)  has additional 𝐾	 − 	1	 − 	𝑛 roots generally not 
belonging to the unit circle and which are different and specific to each polynomial 𝑃4(𝑧). Thus, if 
we consider the real valued function 

𝐹(𝑧) = ' |𝑃4(𝑧)|7 = ' 𝑃4(𝑧)𝑃8(𝑧)llllll
6

4*)&+

,
6

4*)&+

 

(9) 

where 𝑧	!denotes the complex conjugation, then this function will have 𝑛 of its zeros lying on the 
unit circle, namely 𝑒9$! for 1	 ≤ 	𝑘	 ≤ 	𝑛 and the arguments of these zeros are the unknown 
frequencies sought. 

Clearly, the above no longer holds in the presence of noise. If 	𝑓(𝑡) 	= 	𝑠(𝑡) 	+ 	𝜈(𝑡) where 𝑠(𝑡) is of 
the form given by the right hand side of equation (1) and 𝜈(𝑡) is noise, then we can form matrix 
𝐌-
3 of the same form as matrix  𝐌-

0  but with the samples the noisy signal 𝑓(𝑡) in place of the 
corresponding samples of the noise-free signal 𝑠(𝑡). However, such a matrix  𝐌-

3  will generally be 
of full rank, but we can take its 𝐾 − 𝑛 right singular vectors 𝐯4 which correspond to the smallest 𝐾 −
𝑛 singular values of 𝐌-

3  as an approximation of such singular vectors, which would correspond to 
the noise-free matrix 𝐌-

0 . We can again form the corresponding polynomials 𝑃4(𝑧) given by 
equation (8) and function 𝐹(𝑧) given by equation (9). Note that 𝐹(𝑧) is not a polynomial, due to the 
presence of the modulus (or the complex conjugation) function. Due to the effects of noise, no 
roots of polynomials 𝑃4(𝑧) might belong to the unit circle, and also these polynomials might not 
share the exact same 𝑛 roots. Thus, function Φ(𝜔) = 	𝐹3𝑒"$4 = ∑ n𝑃4(𝑒"$)n

76
4*)&+  might not have 

any real zeros belonging to the interval [−𝜋, 𝜋]. Since Φ(𝜔) > 0, the MUSIC algorithm thus instead 
searches for the 𝑛 values of 𝜔 which lie in the interval [−𝜋, 𝜋], where	Φ(𝜔) attains 𝑛 smallest local 
minima. Fig.4(a) illustrates the equivalent but numerically more convenient search for the 𝑛 largest 
local peaks of the reciprocal function  

𝑅(𝜔) =
1

∑ |𝑃4(𝑒"$)|76
4*)&+

. 
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(10) 

To avoid such a numerical search, the root-MUSIC algorithm instead uses the fact that complex 
numbers 𝑧 which are close to the unit circle satisfy 𝑧̅ 	≈ 	 𝑧.+ and thus instead explicitly solves the 
following equation, conveniently reducible to an algebraic (i.e., polynomial) equation 

' 𝑃4(𝑧)𝑃8u(𝑧.+) = 0
6

4*)&+

 

(11) 

where 𝑃!𝑖(𝑧) denotes the polynomial obtained from the polynomial 𝑃𝑖(𝑧) by taking the complex 
conjugates of the coefficients of 𝑃𝑖(𝑧). 

It is clear that if 𝑧4 is a root of equation (11) then so is 𝑧.+lllll; thus, the roots of (11) come in pairs of 
the form: v𝑝4𝑒"$	,			𝜌4.+𝑒"$y. The root-MUSIC algorithm picks 𝑛 pairs of such roots that lie closest to 
the unit circle; the arguments of these pairs are taken as the estimates of the frequencies 𝜔! 	(1	 ≤
	𝑘	 ≤ 	𝑛) of the 𝑛 components of 𝑠(𝑡), as illustrated in Fig.4(b)). 
The interested reader can find more details in (Stoica & Moses, 1979) (Pisarenko, 1973). 

 
Figure 3: a summary of the MUSIC and root-MUSIC algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: (a) Example peak profile of function 𝑹(𝝎) given in equation (10); (b) illustration of roots of 

equation (11) as pairs of complex numbers lying close to unit circle. 
 

Discussion 
 
The tutorial explanations given above were presented to a group of students from which 7 survey 
responses were recorded. Although the response rate to the feedback survey is quite low, 70% of 

(a) (b) 

Required roots of 
equation (11) 
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the responses agreed that “the tutorial provides a clear description about the MUSIC algorithm,” 
and 56% agreed that “I obtained a good understanding about the MUSIC algorithm after going 
through the tutorial.” Survey participants also thought that providing more visual interpretation of 
some of the linear algebra operations will be helpful from a student perspective. 

Where traditional methods to teach signal processing algorithms are grounded in terminology from 
electrical engineering and aim to solve concrete problems, ours is deliberately abstract. We seek to 
first demonstrate to mathematics students how the singular value decomposition can be used to 
identify the dominant frequencies in a noisy signal numerically, to be later supplemented by 
discussion of the application of these methods in digital signal processing. We believe that this 
approach is different to traditional classroom teaching of such signal processing algorithms. 

We envision that this material could be presented in courses on linear algebra, which often 
introduce the singular value decomposition, but may not contextualise it by demonstrating its 
application to practical engineering problems. By first relating the theory to a challenging 
mathematical problem, we aim to inspire mathematics students to consider how their work is 
related to that undertaken in other disciplines. 

This tutorial could also be applied to courses on mathematical computing, as the implementation 
and analysis of these algorithms in a software package such as MATLAB is an instructive exercise 
and provides a tangible outcome from linear algebra subroutines. 

Conclusion and Future Work 
This tutorial presented an approach to reduce the gap between engineering and mathematics 
education by demonstrating an example design of a mathematics tutorial in the context of electrical 
engineering.  The specific example involved taking an alternative presentation of the conventional 
MUSIC frequency estimation algorithm used in signal processing, albeit with no signal processing 
jargon and prior knowledge, but only using the knowledge from linear algebra. Future work 
includes using employing further visual illustrations of the associated multidimensional vector 
spaces via interactive simulations and plots, as well as implementing the tutorial in a linear algebra 
or mathematical computing course. 
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